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ABSTRACT

Cybersickness in virtual reality (VR) significantly disrupts user
immersion. Although recent studies have proposed cybersickness
prediction models, existing models have considered the moment of
cybersickness onset, limiting their applicability in proactive detec-
tion. To address this limitation, we used long-term time series fore-
casting (LTSF) models based on multimodal sensor data collected
from the head-mounted display (HMD). We used a pre-trained
large language model (LLM) to effectively learn the salient features
(e.g., seasonality) of multimodal sensor data by understanding the
nuanced context within the data. The results of our experiment
demonstrated that our model achieved comparable performance to
the baseline models, with an MAE of 0.971 and an RMSE of 1.696.
This indicates the potential for early prediction of cybersickness by
employing LLM- and LTSF-based models with multimodal sensor
data, suggesting a new direction in model development.
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1 INTRODUCTION

As VR technology becomes more accessible, its applications are
gradually expanding in various fields (e.g., education, healthcare,
entertainment) [13, 14, 19]. However, the occurrence of cybersick-
ness in VR (VR sickness), characterized by symptoms such as eye
strain, nausea, and dizziness, poses a significant challenge as these
symptoms disrupt user immersion and undermine the usability of
VR. To measure cybersickness, research has commonly used the
Simulator Sickness Questionnaire (SSQ) [11] or the Fast Motion
Sickness Scale (FMS) [12]. Recently, there has been a growing pref-
erence [25] for the FMS over the SSQ due to concerns about the
consistency of SSQ results (e.g., varying standards of interpreta-
tion). This trend reflects a shift towards seeking more reliable and
standardized measures in VR research.

Recent studies on cybersickness have proposed prediction mod-
els using electroencephalography (EEG), video, and head-mounted
display (HMD) data to enhance the VR user experience [7, 10]. In
particular, EEG data is effective in capturing users’ cognitive ac-
tivities, but the invasive nature of additional measurement devices
beyond the HMD can lead to user discomfort and a diminished VR
experience. As a result, data collected in somewhat intrusive envi-
ronments may lack the reliability and generalizability compared to
the model with data collected in environments more comfortable
for the users [23]. Therefore, the use of HMD data, which is less
intrusive, can be effective for cybersickness prediction modeling.

Most cybersickness prediction models use point-wise sensor
data at the current moment to predict cybersickness at a single
point in time, and have demonstrated high performance [3-6, 16].
Recently, the importance of not only developing cybersickness
prediction models but also applying them to VR content has been
highlighted [10]. However, when models developed based on point-
wise data are integrated into VR content, mitigation measures can
only be taken after the user experiences cybersickness. To ensure a
more natural VR user experience, it is important to take mitigation
measures before the user feels cybersickness; therefore, the early
prediction of cybersickness is important.

Long-term time series forecasting (LTSF) models have been
found to be effective in predicting future data by learning the
characteristics of time series data [27]. To further enhance the


https://orcid.org/0009-0002-7797-4260
https://orcid.org/0000-0002-8347-4986
https://orcid.org/0000-0002-9083-1128
https://orcid.org/0000-0001-5535-0081
https://doi.org/10.1145/3675094.3677578
https://doi.org/10.1145/3675094.3677578

UbiComp Companion ’24, October 5-9, 2024, Melbourne, VIC, Australia

[Context]: {dataset context}
[Instruction]: {task instruction} —p-

[Statistics]: {input statistic

Pre-trained GPT-2
(Embedder)

Patch Reprogramming

Input Embedding

Normalization

Patching
Embedded Patches  —»

e i — [ - ] | % o
: : ! g=
H H w S —
I Text Protot = 5
T o i RO ext Prototypes Zr > g
3!&)
Word Embeddings S ¢

,}_»

from Pre-trained GPT-2

Yoonseon Choi, Dayoung Jeong, Bogoan Kim, & Kyungsik Han

o
]
3
g ) Prediction
—» 2 Pre-trained GPT-2 (Body)
o
& ) i
B g pu
— 2= o 3 b mn
Pl =S S > Q EE ] Co
L Ol I S
— g P EI > a2 >8> > RE ]
gi| 88 &=, 3 gw o
Q =0 3 1 o S
g S i < —
3, q
% ! A 1 4 I
o 1
b ol O e S
Q | EE—
3
I
@
o

Figure 1: Time-LLM architecture based on multimodal sensor data.

prediction performance, there has been active research on time
series forecasting that employed pre-trained large language models
(LLMs) [2, 8, 9, 30]. LLMs are effective in predicting time series data
because they can identify hidden trends and seasonality based on
their pre-trained knowledge of the domain and the characteristics
of time series data through a significant amount of data [8]. How-
ever, with multimodal sensor data measured over time, the high
dimensionality, non-linear relationships, and continuous nature
of the data pose challenges for embedding it into LLMs [15]. It is
necessary to learn not only individual data points, but also dynamic
patterns over time [15]. Because of these challenges, research on
modeling multimodal sensor data using LLMs remains insufficient.

This paper proposes a model for the early prediction of cyber-
sickness using Time-LLM [9] based on multimodal sensor data
collected from an HMD. Time-LLM is an LTSF model that uses
the pre-trained LLM as its backbone. Our model processes mul-
tivariate data highly correlated with cybersickness (e.g., eye and
head movements) as univariate data and embeds a prompt with
descriptions of the input data along with the multimodal sensor
data to enable effective learning. Experimental results using HMD
data from 45 participants show that our model achieves comparable
performance to baseline LTSF models (MAE=0.971, RMSE=1.696).
These results indicate that the use of the LLM with multimodal
sensor data can help capture data flows that are difficult to identify
using LTSF models alone. By incorporating comprehensive descrip-
tions of the input data into the prompt, it is possible to achieve more
accurate learning of the characteristics of multimodal sensor data.
Furthermore, this research demonstrates that cybersickness can be
predicted using only HMD data and highlights the significance of
early prediction in the cybersickness domain by using LLMs and
LTSF models.

2 METHODOLOGY

We adopted Time-LLM [9] as the model for early prediction of
cybersickness. Figure 1 represents the architecture of Time-LLM,
based on multimodal sensor data. Time-LLM is a generalized model
designed across various domains (e.g., traffic, finance), and the
pre-trained LLM used in Time-LLM is applied without domain-
specific fine-tuning. To efficiently train on the multimodal sensor
data with numerous features, we used pre-trained GPT-2! [20] as
the backbone, given its relatively lightweight nature as an LLM.

We used pre-trained GPT-2 due to our computational limitation.

Time-LLM, functioning as an LTSF model, sequentially takes
input data of length L (x1, ..., x7) and predicts future data of length
T (xX£+1, ---» XxL+T)- The model consists of four key components: (1)
input embedding, (2) patch reprogramming, (3) prompt-as-prefix,
and (4) prediction.

2.1 Input Embedding

To enhance the memory efficiency during training Time-LLM, we
performed instance normalization and patching during the input
embedding process.

2.1.1 Instance normalization. To preserve the characteristics of
each data feature (channel) independently without mixing channels,
we decomposed it into univariate series and performed instance
normalization for each channel separately, rather than normalizing
the multivariate data all at once.

2.1.2  Patching. Capturing patterns that appear over time by pre-
serving the locality of the time-series data is crucial for improving
prediction performance. Therefore, we implemented a patching pro-
cess to handle the multimodal sensor data in a series-wise manner
instead of a point-wise approach.

N:V;PJ+2 (1)

where N is the number of patches, P is the length of a patch, and
S is the length of a slide. N represents the number of input tokens.
The use of patches reduces the number of input tokens compared
to point-wise processing, lowering the spatiotemporal complexity.

2.2 Patch Reprogramming

To train the model with multimodal sensor data and natural lan-
guage together, an embedding process that aligns the two modal-
ities (eye and head movements) is essential. Through the patch
reprogramming process, we retained text prototypes related to the
characteristics of the time-series data (e.g., up, stable, periodic)
by linearly probing word embeddings from the pre-trained GPT-2.
These text prototypes learn connecting language cues (e.g., short
up, stable state) to represent specific patches’ information and com-
bine these cues (e.g., short up then stable state). Using patches and
text prototypes, the time-series information of patches is learned
as vectors through multi-head cross-attention. Then, by linearly
projecting these vectors, we can obtain the reprogrammed patches,
which are referred to embedded multimodal sensor data.
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[Dataset context]: The “Sickness” dataset consists of sensor data
on eye and head movements per second. This dataset ...

[Task instruction]: Forecast the next {T} steps given the previous
{L} steps information.

[Input statistics]: The input has a minimum of {minimum}, a
maximum of {maximum}, and a median of {median}. The overall
trend is {upward or downward}. The top five lags are {lags}.

Figure 2: Example of a prompt including key information of
the input data.

2.3 Prompt-as-Prefix

Directly transforming multimodal sensor data, consisting of numeri-
cal sequences, into natural language poses a challenge in generating
prompts without degrading the performance of LLMs [28]. There-
fore, instead of directly embedding only the multimodal sensor data
into the LLM (GPT-2), we embed it together with prompts (Figure 2)
that describe key information about the input data. To address this,
prompts are vectorized by tokenizing them through the pre-trained
GPT-2 embedder. Then, the embedded prompt is prepended to the
reprogrammed patches. This embedded prompt is referred to as a
prompt-as-prefix.

The prompt includes the dataset context, task instruction, and in-
put statistics. The dataset context provides background information
to help understand the cybersickness dataset. The task instruction
provides a specific guideline for the model’s training task by speci-
fying the length of the input data (L) and the output prediction data
(T). The input statistics include the minimum, maximum, and me-
dian values, which are basic statistical information for time series
data. To capture the characteristics of the multimodal sensor data,
the input statistics also include trends (e.g., up/downward) and the
top-5 lags.

2.4 Prediction

The packed vector resulting from concatenating the prompt-as-
prefix and reprogrammed patches is embedded into the pre-trained
GPT-2, and passed through a Vanilla Transformer encoder. The
prompt-as-prefix is removed from the packed vector, and the repro-
grammed patches are obtained as output representations. Through
flattening and linear projection processes, the model predicts the
cybersickness (FMS) with a length of T.

3 EXPERIMENT

3.1 Data Setup

We used an MSCVR dataset [5] obtained from a user study involving
45 users who watched 20 cybersickness-inducing videos, each 45
seconds long, using the HTC VIVE Pro Eye HMD. This dataset
includes responses from each participant, who rated their level
of cybersickness every 15 seconds using the FMS, allowing for
a quantitative assessment of their cybersickness levels. The FMS
score ranges from 0 to 20, with 0 indicating “no sickness” and 20
indicating “severe sickness.” Additionally, we collected sensor data
with two modalities via only the HMD. The sensor data comprises

UbiComp Companion ’24, October 5-9, 2024, Melbourne, VIC, Australia

23 signals related to eye movements (e.g., gaze direction of both
eyes, pupil position) and 6 signals related to head movements (e.g.,
head position and rotation), measured at a frequency of 90Hz.

We preprocessed the MSCVR dataset to fit the LTSF model struc-
ture. We downsampled the data from 90Hz to 1Hz using the mean
value for each second [4]. While traditional LTSF models are re-
gression models that predict continuous values, the FMS is interval
scale data with values ranging from 0 to 20. Thus, each FMS value
measured every 15 seconds was flattened across 15 data points.
Additionally, we split the MSCVR dataset into three parts for model
training: the first 70% of each 45-second video as the training dataset,
the next 10% as the test dataset, and the remaining 20% as the vali-
dation dataset.

3.2 Model Setup

During model training, we ensured that data from different videos
were not mixed when input to the model. Hyperparameters neces-
sary for training were set according to the data length of 45 seconds
per video. The length of the input data L was set to 25, the length
of the prediction data T was set to 20, and the batch size was set
to 45 to match the number of data points per video. In the input
embedding process, the patch length P was set to 16, and the slide
length S was set to 8. Among other hyperparameters necessary
for training, the learning rate, was set to 0.0001, the optimizer was
Adam, and the loss function was MSE to optimize the model.

3.3 Baseline Models

To compare the performance with existing well-known LTSF
models, we selected DLinear [29], Vanilla Transformer [26], and
PatchTST [18] as baseline models. Vanilla Transformer was chosen
because Time-LLM uses the Vanilla Transformer encoder structure
when prompting the pre-trained GPT-2 with a pair of the embedded
prompt and reprogrammed patches. PatchTST is an appropriate
model to validate the effectiveness of using LLM on multimodal
sensor data because the input embedding component of Time-LLM,
which uses instance normalization and patching method, is based
on PatchTST. For comparison with Transformer-based LTSF mod-
els, we selected DLinear, a one-layer linear model. Furthermore, to
evaluate the effectiveness of the patch reprogramming and prompt-
as-prefix, we conducted experiments by removing each module of
Time-LLM.

Table 1: Results of LTSF models with the best result in bold
and the second best underlined. “Time-LLM” represents the
original model, while “Time-LLM-NR” denotes the version
with only the prompt-as-prefix, and “Time-LLM-NP” denotes
the version with only the reprogrammed patches.

Models MAE RMSE

DLinear 1.328 1.910
Transformer  2.144 3.044
PatchTST 0.931 1.678
Time-LLM-NR 1.766  2.743
Time-LLM-NP 1.038 1.751
Time-LLM 0.971 1.696
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3.4 The Performance by LTSF Models

To evaluate the prediction performance of the regression model, the
MAE and RMSE metrics were used. Our results are shown in Table 1.
Time-LLM achieved a performance of 0.971 for MAE and 1.696 for
RMSE. Compared to Vanilla Transformer, Time-LLM reduced MAE
by 55% and RMSE by 45%. Compared to DLinear, Time-LLM reduced
MAE by 27% and RMSE by 21%. In addition, compared to Time-LLM,
Time-LLM-NR showed a 45% decrease in MAE and a 38% decrease
in RMSE, while Time-LLM-NP showed a 7% decrease in MAE and a
3% decrease in RMSE. However, compared to PatchTST, Time-LLM
showed a slight decrease in performance, with a 4% increase in
MAE and a 1% increase in RMSE.

4 DISCUSSION

4.1 Performance Implications

As shown in Section 3.4, the results suggest the effective application
of Time-LLM to multimodal sensor data. Our experimental results
with Time-LLM-NR and Time-LLM-NP demonstrated that each
module has a significant impact on model performance. Through
the Time-LLM-NR experiment, we confirmed that patch reprogram-
ming may help the model understand patterns and trends within
data by using pre-trained word embeddings. The results of Time-
LLM-NP suggest the importance of well-designed prompt-as-prefix.
Multimodal sensor data is collected by participant or content in VR
environments. Therefore, in an LTSF model where data is input se-
quentially, the model must be designed to segment the multimodal
sensor data by participant or content for training and prediction.
For more accurate prediction, it is essential for the model to un-
derstand overall context of the multimodal sensor data by using
prompt-as-prefix.

Although Time-LLM for multimodal sensor data achieved com-
parable performance to the baseline models, Time-LLM showed a
slight decrease in performance compared to PatchTST. Performance
is likely to be affected by the type of LLM, as shown experimentally
by existing LLM-based LTSF models [17]. For example, we have
confirmed that using LLaMA-7B [24], a more recent LLM than the
GPT-2 we used, for an LTSF model may result in better perfor-
mance [9]. Prior research has also indicated that PatchTST slightly
outperforms the GPT-2-based model in long-term forecasting tasks,
among various time series forecasting methods such as short-term
or few-shot forecasting [30]. Based on this prior research, it is pos-
sible that using a more advanced LLM than GPT-2 could improve
performance in the early prediction of cybersickness.

Nevertheless, the use of pre-trained LLMs can be effective for
cybersickness prediction modeling. Many studies have used the
modality-specific method to minimize information loss about the
characteristics of each modality that are highly correlated with
cybersickness when training models [3-5]. Since cybersickness
occurs from the sensory conflict between various body signals [1,
21, 22], embedding detailed descriptions of the characteristics of
each body signal and the correlations between them into a Time-
LLM can effectively capture features in multimodal sensor data. This
approach, through the use of pre-trained LLMs, enables integrated
analysis and training of modalities, which can help simplify the
training process for each modality, and the performance evaluation
results of Time-LLM are encouraging.

Yoonseon Choi, Dayoung Jeong, Bogoan Kim, & Kyungsik Han

4.2 Limitation and Future Work

Although the use of LLMs for early prediction of cybersickness has
shown effectiveness, we acknowledge two important limitations.

First, through the experiments, we confirmed that the training
times of Time-LLM were longer compared to the existing LTSF
models. Training LLMs with multimodal sensor data can lead to
increased training time due to the excessive number of parame-
ters. The primary goal of early prediction of cybersickness is to
enhance the VR user experience by proactively mitigating cyber-
sickness based on model predictions. Thus, improving the training
efficiency of the model is important for quickly predicting future
cybersickness occurrences. To address this, future research will
focus on optimizing patch reprogramming. Specifically, improving
the linearly probing method used in the patch reprogramming com-
ponent to better extract words related to time series data will enable
more selective identification of relevant terms from multimodal
sensor data. This refinement is expected to reduce the number of
parameters from pre-trained word embeddings.

Second, while the performance of the cybersickness prediction
model by using Time-LLM was comparable to the baseline model,
there is still room for improvement. To enhance the prediction
performance of Time-LLM, it is important to develop a prompt that
can effectively explain the multimodal sensor data. The current
prompt provides a general description of the input data. To improve
the existing prompt, we propose to perform feature extraction to
identify the variables most closely associated with cybersickness
within the modalities of eye and head movements. By embedding
detailed descriptions of these features into the prompt, we aim to
enhance the interpretability of the modalities and, consequently,
improve the performance of the model.

5 CONCLUSION

In this paper, we proposed a Time-LLM-based model for early pre-
diction of cybersickness using multimodal sensor data. We demon-
strated that cybersickness can be predicted using only the multi-
modal sensor data collected from HMDs, and that it is possible to
predict cybersickness early using an LLM-based LTSF model. In
particular, our experiments confirmed the effectiveness of patch re-
programming and using prompt-as-prefix to learn from multimodal
sensor data. This study suggests that Time-LLM can be effectively
used for cybersickness prediction. We hope to provide valuable
insights into the field of cybersickness prediction modeling.
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