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Figure 1: The foreground (first row) and the background (second row) screenshots ofVISTA from different angles. The foreground
is the area in which the participants are mainly involved during training. VISTA provides a realistic background to help
participants feel real and immersive during training.
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ABSTRACT
Pervasive symptoms of peoplewith autism spectrum disorder (ASD),
such as a lack of social and communication skills, are major chal-
lenges to be embraced in the workplace. Although much research
has proposed VR training programs, their effectiveness is somewhat
unclear, since they provide limited, one-sided interactions through
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fixed scenarios or do not sufficiently reflect the characteristics of
people with ASD (e.g., preference for predictable interfaces, sensory
issues). In this paper, we present VISTA, a VR-based interactive so-
cial skill training system for people with ASD. We ran a user study
with 10 people with ASD and 10 neurotypical people to evaluate
user experience in VR training and to examine the characteristics
of people with ASD based on their physical responses generated by
sensor data. The results showed that ASD participants were highly
engaged with VISTA and improved self-efficacy after experiencing
VISTA. The two groups showed significant differences in sensor
signals as the task complexity increased, which demonstrates the
importance of considering task complexity in eliciting the char-
acteristics of people with ASD in VR training. Our findings not
only extend findings (e.g., low ROI ratio, EDA increase) in pre-
vious studies but also provide new insights (e.g., high utterance
rate, large variation of pupil diameter), broadening our quantitative
understanding of people with ASD.

CCS CONCEPTS
• Human-centered computing → Virtual Reality; Interactive
systems and tools; User studies.
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Virtual reality, Autism Spectrum Disorder (ASD), Social skills train-
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1 INTRODUCTION
One of the application areas of virtual reality (VR) technology is
training and education [32, 54, 82]. This is because VR gives an op-
portunity to create an environment and conditions that correspond
to those in the real world and to have users experience a specific
situation in an immersive way [42, 66, 70, 73]. In VR, users can have
great flexibility in interacting with virtual environments, agents,
or objects, engage in repetitive learning, and receive feedback on
their behaviors or decisions during training [38].

Such VR opportunities have been extended to those in need
of social support [1, 14], including people with autism spectrum
disorder (ASD) [14, 25, 52]. Autism Spectrum Disorder (ASD) is a
complex developmental condition involving the challenges of social
interaction, along with specific patterns of limited and repetitive
behaviors [6]. Research on people with ASD has developed various
types of VR content to support self-help skills (e.g., activities of daily
living skills [3, 46, 65], driving [19], road crossing [61]) or social
skills (e.g., job interview [68], facial expression recognition [10, 16],
and social interaction [40, 60, 69]) that are necessary for one’s daily
life. Research has confirmed the improvement of target behaviors
or educational effects through the VR experience. More recently,
research has started to consider the information related to user body

responses (e.g., physiological data, eye movement, body movement)
to be implemented in the development of a training tool [10, 53, 60,
61]. This provides a way to quantitatively measure and understand
the characteristics of people with ASD and to design additional
solutions for their social independence.

Despite the advantages of VR content and technology in helping
people with ASD improve their social skills, when it comes to VR
content development, we identified two limitations in previous
studies. The first is the one-sided interaction in previous VR solu-
tions, in which users experience a pre-programed, fixed scenario
(e.g., giving a presentation for a given time [23], answering an in-
terviewer’s questions in a job interview [68]) rather than offering
them an explorable environment in which their situation could be
understood, allowing them to take actions on their own, and receiv-
ing feedback on their responses to an avatar. Second, the design and
development of the content have been conducted without careful
consideration of people with ASD. Bozgeyiki and Katkoori [13]
presented key design guidelines for VR system development for
people with ASD. The authors emphasized that considering the
characteristics of people with ASD (e.g., sensory issues [11], prefer-
ence for expected interfaces [41, 47] and restricted and repetitive
behaviors [48]) into account is critical in terms of the system’s us-
ability, effectiveness, and sustainability. With a VR system designed
based on such careful guidelines, the characteristics of people with
ASD can be better captured in sensor data through more genuine
experience that can quantitatively represent their behaviors.

In this paper, we present VISTA (VR-based Interactive Social
skills Training system for people with ASD) that was designed
not only to reflect insights and feedback from ASD professionals
and stakeholders but also to comply with design guidelines for
people with ASD [13]. VISTA offers a training content that places
people with ASD in an environment in which they need to under-
stand given scenarios and interact with others. In particular, one
key design of VISTA is the provision of training scenarios with
incremental complexities, which has been considered an effective
training method for people with ASD but has not been employed
in previous studies. Lastly, VISTA was designed to collect various
types of sensor data (i.e., eye movement, head movement, physio-
logical signals, and voice) from people with ASD. We considered
those signals that could be collected unobtrusively, given their high
sensitivity to wearing extra devices.

We conducted a user study with 20 participants from two user
groups (one group with 10 ASD participants and the other with 10
neurotypical participants). The objectives of the user study were
to (1) measure the effectiveness of the design of VISTA on having
people with ASD engage in training and helping them understand
social situations and feel confidence in social interactions; (2) inves-
tigate the difference in sensory reactions between the two groups;
and (3) discuss the characterization of people with ASD by compar-
ing the results with those of previous studies and presenting new
insights identified in our study.

Our study results highlight three main findings. First, the ASD
participants showed positive perceptions of their training experi-
ence and increased self-efficacy after training through VISTA. Sec-
ond, although there were no significant differences in the variation
of sensor signals between the ASD participants and the neurotypi-
cal participants at the beginning, the differences becamemuchmore
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Table 1: Examples of previous research on VR-based training systems for people with ASD. “ADL” indicates activities of daily
living. AP/NP indicate ASD/neurotypical participants, respectively. 360-degree VR is an audio-visual simulation surrounding
the participant, and its content can be viewed in all directions. “O”: used/considered; “X”: not used/not considered. For the last
column (ASD consideration), “△”: partially considered characteristics of people with ASD, missing detailed design guidelines.

Authors Focus Age,
# of participants

Equipment Sensor data 360-degree
VR

Interaction
in VE

ASD
consideration

Robles et al. [60] Social interaction 28.8 yrs (avg.),
AP = 6, NP = 13

HMD,
controllers, trackers

Eye-tracking,
head & hand movement

O O △

Adiani et al. [2] Job interview 22.5 yrs (avg.)
AP = 9, NP = 8

Tobii EyeX/4C,
a headset, E4 EDA, BVP, eye-tracking X O O

Ke et al. [40] Social skills 10-14 yrs,
AP = 7

Mouse, headset N/A O O X

McCleery et al. [51] Police interaction skills 12-38 yrs,
AP = 60

Head-mounted iPhone N/A O O X

Herrero & Lorenzo [29] Communication skills 8-15 yrs,
AP = 7

HMD (Oculus Rift) N/A O O △

Rosenfield et al. [69] Conversation skills 6-7 yrs,
AP = 2

HMD (Oculus Rift),
microphone

N/A O O △

Simões et al. [65] ADL (bus-taking) No age info,
AP = 10, NP = 10

HMD (Oculus Rift),
BioNomadix

EDA O X △

Adjorlu et al. [3] ADL (shopping skills) 12-15 yrs,
AP = 9

HMD, controllers N/A O O △

Bozgeyikli et al. [12] Vocational training 25-29 yrs,
AP = 9

HMD N/A O X △

Cheng et al. [16] Social cognition 10-13 yrs,
AP = 3

HMD N/A O O △

Saiano et al. [61] Street crossing 19-44 yrs,
AP = 7

Video projector,
Microsoft Kinect

Eye-tracking X O X

Smith et al. [68] Job interview 18-31 yrs,
AP = 26

Mouse N/A X O △

Kandalaft et al. [37] Social cognition 18-26 yrs,
AP = 8

Keyboard, mouse N/A X O X

prominent in most sensor signals as the task complexity in the sce-
narios increased. This highlights the effective design of VISTA for
increasing the engagement and immersiveness of the ASD partici-
pants. Lastly, by interpreting our study findings in light of previous
studies, we reaffirmed some of the key sensor signals as well as
identified other signals that are somewhat neglected as indicators
to understand people with ASD.

The main contributions of this paper are as follows:
• We developed VISTA which incorporated key design guide-
lines for VR content for people with ASD.

• We demonstrated the effectiveness of the design of VISTA
in eliciting ASD characteristics and providing them with an
immersive VR training experience.

• We extended our understandings of sensor signals generated
by people with ASD during the VR experience by discussing
our findings in the light of previous studies.

2 RELATEDWORK
2.1 VR-based training for people with ASD
Many studies have used VR to train and educate the self-help skills
(e.g., activities of daily living, driving, road crossing) of people with
ASD [3, 65, 83]. For example, Saiano et al. [61] developed VR con-
tent to train the street crossing and path-following skills of adults
with ASD. The participants started training by looking at the virtual
environment projected on the large display front, in which their
movements were reflected through the Kinect system. The results

of the study showed a significant improvement in navigation per-
formance (e.g., walking safely on a green light through a crosswalk).
McCleery et al. [51] provided the training in interactions with po-
lice officers for adolescents and adults with ASD. The virtual police
officer approached the participant and asked several questions for
personal identification (e.g., name, address, identification card), and
the participant was asked to answer the questions. The study results
showed that the VR content helped the participants interact safely
and effectively with police officers.

VR content has also been developed to help acquire and strengthen
the social skills (e.g., job interviews, facial expression recognition,
social interaction) [10, 29] of people with ASD. Ke et al. [40] used
VR content for the training of social skills in children with ASD
by offering four social interaction tasks (i.g., virtual schooling, so-
cial role-playing, artifact design, and social gaming). The authors
found that the children with ASD showed improved social skills as
VR training sessions were repeated. Adiani et al. [2] developed a
VR-based job interview training system for adults with ASD. The
participants experienced possible challenges in the career interview
environment (e.g., interrupted by knocking into the interview room
during the response).

Despite such opportunities for people with ASD, when it comes
to design of content and system, previous studies did not seem
to sufficiently consider the characteristics of people with ASD in
terms of the design of content and systems, as summarized in Ta-
ble 1. Bozgeyiki and Katkoori [13] presented design guidelines for
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VR content for people with ASD, consisting of three main aspects
(information presentation, task design, and VR system). Our VR
training system, VISTA, employed those design guidelines. A salient
gap in previous research is the somewhat limited user experience
due to a pre-programmed, fixed scenario and one-sided interactions
during training [23, 52]. Most existing systems were designed to
support users only in situations in which they talked alone or only
answered the agent’s questions. Further, since the content is not
structured for the user to understand his or her current situation
and to respond, the application of such VR training experiences to
the real world is somewhat unclear. VISTA allows people with ASD
to experience in-the-moment feedback and provides task scenar-
ios with incremental complexity. We will detail the development
process of VISTA grounded in the design guidelines in Section 3.

2.2 Sensor signals to understand people with
ASD

Much research has been conducted using various types of sensor
data (e.g., body movement and orientation, eye movement, physi-
ological signals, video and audio) to understand and characterize
users and find ways to improve the VR user experience with quan-
titative evidence [31, 33, 49, 59].

Many previous VR studies for people with ASD employed gen-
eral, casual contexts, such as game, emotion/facial expression recog-
nition, and conversation, to collect sensor data [4, 9, 28, 45]. How-
ever, as shown in Table 1, the majority of VR studies in “training
contexts” did not have the collection of sensor data [3, 12, 16, 29,
37, 40, 51, 68, 69]. Even for some studies that employed sensor data
collection ( [2, 60, 61, 65] in Table 1), their VR content is somewhat
limited because they lack interactive components or because only
few cases of the challenging moments frequently encounterd by
people with ASD are presented. Thus, it is unclear whether their
training experience through such training conditions is effective
when it is applied to real-world situations.

Sensory issues must be carefully considered when collecting
sensor data from people with ASD due to their high sensitivity to
objects, environments, or atmosphere [11]. Obtrusive and excessive
collection of sensor data for people with ASD will certainly degrade
their VR experience or amplify their anxiety. Therefore, a compre-
hensive understanding of the characteristics of people with ASD
and their application to content design is essential. Some studies
have collected and analyzed brain signals [17, 21, 81], but the collec-
tion of such data can be highly difficult to implement and maintain.
In this work, we attempted to leverage minimal sensor types that
have been commonly used in previous studies (e.g., eye-tracking,
head movement, voice, physiological signal) [10, 28, 45, 60, 61, 65].

3 VISTA DESIGN AND DEVELOPMENT
Being a barista assistant has been suggested as an appropriate job
role for people with ASD because it allows continuous interactions
with the barista or customers [5, 7, 77]. The role allows exposure
to such interactive situations and provides people with ASD with
the opportunity to gain situational awareness and interact with
others. In a non-VR environment, barista vocational education has
been widely conducted for people with ASD in the field of special

Table 2: Main categories of design considerations for people
with ASD suggested in [13] and the strategies reflected in our
training system.

Main
Categories [13]

Strategies reflected in VISTA

Avoid sudden or loud sound
Revisit the opening scenarios
Provide adjustable sounds

Information
presentation

Provide clear foreground and background differences
Provide concrete and routinized tasks
Provide gradual task complexities
Provide in-the-moment feedback

Task design

Provide short training scenarios
Provide the familiarization time with the equipment
See the virtual environment before the training
Avoid wearing/using or complex input devices

VR system

Provide various interactions with human-like avatars

education operated by welfare centers [34]. We had iterative discus-
sions with medical professionals and ASD stakeholders (e.g., ASD
experts, adults with ASD) to decide key components and the level
of complexity that needed to be implemented in VISTA scenarios.

The design of VISTA was carefully decided based on three design
guidelines of the VR system for people with ASD [13]: information
presentation, task design, and VR system. We reflected on the first
two for our VR training content development and the last for the
experimental environment setting. Table 2 summarizes the design
considerations of VISTA. We followed the information presenta-
tion guidelines by providing a clear foreground and background
differences for more comfortable visual processing [43, 56, 62]. We
then excluded abrupt visual and sound changes to consider the
ASD participants’ high affinity for predictable situations [39, 41]
and audiovisual sensitivity [27, 64]. Further, the complexity of the
scenario was increased incrementally to allow people with ASD to
confront more challenging situations over time (not in a sudden).
VR tracker- or joystick-based tasks were excluded, given the motor
difficulties commonly seen in people with ASD [41, 78].

Figure 2 shows the key interaction steps in VISTA. We organized
the content into three phases to increase effectiveness and to more
closely examine ASD characteristics. In all phases, the participants
began training with opening scenarios. In the opening scenarios,
the participant was informed by the cafe manager (barista) that
the customer’s drink was ready, remembered the order information
(e.g., order number, type of drink), and called the customer by the
order number. From Phase 1 to 2, the complexity of the interac-
tion increases as the number of drinks to be served increases by
two. From Phase 2 to 3, complexity of interaction increases once
again because an appropriate response is required to the customer’s
complaint about the served drink (The first scenario in Phase 3:
cafe-side mistake, The second scenario in Phase 3: customer mis-
understands that their drink is mis-served. When a cafe customer
starts a complaint, the participant compares and checks the receipt
on the table and then responds. The response in the first scenario
in Phase 3 is judged by the researcher as (1) no response, (2) ap-
propriate response, (3) inappropriate response, or (4) insufficient
response. For the second scenario in Phase 3, (1)-(3) were used.
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Figure 2: Training phases of VISTA. The participants conducted three consecutive training phases (Phase 3 includes two social
interaction scenarios), and the participants could experience gradually increased complexity (from “Low” to “High”) over
phases. In “Complaint Response” (Phase 3), the participants repeatedly conducted training unless “in-the-moment feedback”
on the response was “appropriate.”

4 USER STUDY
4.1 Participants
We conducted a user study in an independent experimental space
at the author’s institution. We spent six months (from November
2021 to May 2022) recruiting 10 ASD participants (male = 8, female
= 2) by distributing leaflets to organizations employing people with
ASD and clinics, and posting recruitment notices on online ASD
community websites. The inclusion criteria for participation were
(1) 18 years of age or older, (2) diagnosed with ASD by a medical
professional, and (3) capable of understanding the purpose of the
study and independently participating in the study without any
assistance of parents or caregivers. The age of the ASD participants
ranged from 20 to 32 years (mean = 23.83, SD = 4.45). As the control
group, we also recruited 10 adults without ASD from the authors’
institutions through word-of-mouth or emails (22-31 years; male
= 6, female = 4). We aimed to clearly identify the user experiences
and sensor-related features displayed by people with ASD. We refer
to the study participants in the remainder of the manuscript by
specifying them as AP (ASD participants) and NP (neurotypical
participants; individuals without ASD). A neurotypical person is
an individual who does not have any pervasive developmental
disorder.

4.2 Apparatus
The HTC VIVE Pro Eye VR headset and Empatica E4 wristband [24]
were used in the experiment and the virtual environment was run
on a Windows 10 PC with an Intel Core i7 and GeForce RTX 2070
graphics card, RAM 16G. We developed the program using the
Unity3D engine and the SteamVR plugin.

4.3 Study procedure
Two groups, the AP and the NP, joined the user study under the
same study protocol. The researcher started by introducing the
study before providing VISTA, and collected informed consent from
each participant. We then asked the participants for a rehearsal,
which covered Phases 1 and 2. The participants played the role
of a barista assistant, and the two researchers played the role of
a cafe manager and a customer. After a rehearsal, the researcher
introduced VR and sensor collection equipment and helped the
participants wear it. We gave the AP an additional 1-5 minutes to
be familiar with wearing the equipment in consideration of their
sensory issues. The researcher helped the participants calibrate
view focus and adjust the level of sound and height of the motion
desk before starting VISTA. The average training timewas 8minutes
(min = 6.47, max = 12.13), and we collected sensor data (e.g., eye-
tracking, head movement, voice, and physiological signals) through
the E4 band and the HMD during the training. After training, the
participants completed a short survey and an exit interview. The
exit interviews consisted of open-ended questions investigating
the overall satisfaction and the challenges regarding VISTA (i.e.,
How real the cafe environment was?, Did you feel dizzy or too
stuffy?). The interview took an average of 11 minutes. Figure 4
shows the overall study procedure of the study. This study was
approved by the Institutional Review Board (IRB) at the authors’
institution (B-2202-736-302).

4.4 Measures
We collected responses to the survey, including the iGroup Presence
Questionnaire (IPQ; 14 items with a 7-point Likert scale) [63] and
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• Heart rate (HR)
• Skin temperature (TMP)

(a) Experiment environment (b) Collected sensor data (c) Unity game view on a researcher’s side

Base Station

Base Station

Figure 3: Study environment settings and the types of sensor data collected during the experiment. Depending on the partici-
pant’s response, the researcher selects the response type (only visible to the researcher), and the avatar (e.g., a customer) shows
the subsequent reaction.

Figure 4: The procedure of the study. After rehearsing Phases
1 and 2 and wearing the equipment, the participants joined
the training sessions. We then asked for the survey and exit
interview.

the Perceived Self-Efficacy (PSE) Scale (8 items with a 5-point Likert
scale) [80]. The IPQ was used to measure participants’ sense of
presence in a given virtual environment with 13 questions for four
categories: general (1 question), spatial presence (5), involvement
(4), and experienced realism (4). The PSE was used to evaluate
changes to self-beliefs on one’s social skills through VR training.
The items of the PSE were developed by referring to [57, 67, 72]
based on Bandura’s theory of perceived self-efficacy [8]. We asked
the participants to complete the PSE before and after the training.

5 RESULTS
We collected eye-tracking, head movement, physiological signals,
and voice from 10 AP and 10 NP. We collected physiological signals,
including electrodermal activity (EDA), blood volume pulse (BVP),
heart rate (HR), and temperature (TMP), through the E4 band [24],
which has been widely used in prior research [2, 22, 35, 79].

We also employed the notion of entropy as a metric to investigate
the state of randomness and irregularity of the time series data.
Entropy has been employed in many studies, and its usefulness has
been validated in various domains, including information science,
economy, environment, etc. [55, 58, 74, 76]. High entropy means
that the data are located sporadically, whereas low entropy means
the concentration of similar data. In the entropy formula below, 𝑝𝑖
indicates the probability that a particular value will occur.

Entropy = −
∑︁

(𝑝𝑖 )𝑙𝑜𝑔(𝑝𝑖 ) (1)

Figure 5: The survey results of (a) the iGroup Presence Ques-
tionnaire (IPQ) and (b) the Perceived Self-Efficacy (PSE) Scale
(***p <0.001, **p <0.01, *p <0.05).

We provided participants with three phases of training, and
the training complexity increased gradually. We investigated the
statistical significance of two groups for each phase to examine
the feasibility of training content complying with guidelines [13].
Considering the results of normal distribution from the Shapiro-
Wilk test (p >0.05) and homoscedasticity from Levene’s test (p
>0.05), we performed the independent t-test. Figure 7 illustrates
the differences between the two groups for each sensor signal over
the three phases. Lastly, for the PSE scale analysis, we performed
the paired t-test, since we asked for the PSE scale pre- and post-
training. We employed Cohen’s d as a measure of the effect size
to investigate the strength of the differences between two groups,
where 0.20, 0.50 and 0.80 indicate small, medium and large effect
sizes, respectively [18].

5.1 Self-evaluations on VISTA
Figure 5-(a) illustrates the results of the IPQ responses. We found
that the AP showed a higher level of satisfaction across all per-
spectives. There were statistically significant differences in general
(t(18) = 2.93, d = 1.40), spatial presence (t(18) = 2.92, d = 1.52), re-
alism (t(18) = 4.50, d = 2.29), and overall scores (t(18) = 3.42, d =
1.76). These results confirm that the AP felt greater VR presence
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Figure 6: Box collider in Unity3D

and spatial immersion than the NP and positively perceived the
virtual environment provided by VISTA.

Regarding the PSE (See Figure 5-(b)), the AP showed a signif-
icant difference (t(18) = 2.64, d = 1.15, p <0.05) before and after
the training (before: 22.00, after: 31.10), whereas the NP did not
show a significant difference (before: 32.25, after: 32.25). Based on
this result, we can conclude that VISTA provided the AP with op-
portunities to feel more confident in social interactions and task
completion.

Furthermore, through interviews with participants, we con-
firmed that an immersive training environment was provided and
there was no inconvenience (e.g., cybersickness) while performing
the training. “I didn’t feel dizzy at all because I didn’t move a lot
during the study and usually looked at the front. ... Like the cafe I
often go these days, there are seasonal beverage posters on the wall
and COVID-19 guidelines on the desk, so I felt a sense of reality.” (ASD
participant).

These results confirm the positive perception and experience
of people with ASD in training through VISTA. Based on these
findings, we expect that sensor data that reflect physical behaviors
and states can be used as more reliable indicators for understanding
people with ASD. In the following sub-sections, we present the
results of a comparative analysis of sensor data between the two
groups according to task complexity.

5.2 Eye-tracking
5.2.1 Pupil diameter and eye openness. Previous research has
shown differences between the AP and the NP in pupil diame-
ter in VR content with the same complexity [10, 45]. As shown in
Fig. 7-(a), the averages of the two groups were similar in Phases 1
and 2 (Phase 1: 3.35 (AP); 3.34 (NP), Phase 2: 3.29 (AP); 3.24 (NP)),
with no significant difference. However, in Phase 3, the entropy-
based t-test results showed a significant difference (right eye: t(18)
= 2.22, d = 1.12; left eye: t(18) = 2.16, d = 1.09; p <0.05). We also
measured the entropy of eye openness. The eye openness consists
of a value between 0 and 1, where 0 indicates that the eyelid is
completely closed and 1 indicates that the eye is wide open. As
shown in Fig. 7-(b), the t-test results showed statistical significance
in Phase 3 (right eye: t(18) = 2.22, d = 0.75; left eye: t(18) = 2.16, d =
0.76; p <0.05). These results of pupil diameter and eye openness in-
dicate that as the complexity of the required social interaction skills
increased, the AP showed more active pupil dilatation/contraction
and eyelids movement in both eyes compared to the NP as the
complexity of the required social interaction skills increased. This
also corresponds to some embarrassed behaviors exhibited by the
AP during training (e.g., looking around and saying him/herself,
“What should I do?”).

5.2.2 Pupil position. The pupil position consists of 𝑥 and 𝑦 coor-
dinates. The upper left corner of both lenses is (𝑥 , 𝑦) = (0, 0), the
lower right corner is (𝑥 , 𝑦) = (1, 1), and the center is (𝑥 , 𝑦) = (0.5,
0.5). Although there were no noticeable results in Phases 1 and 2
(Fig. 7-(c)), the t-test results support clear patterns with significant
differences over the x-coordinates of the pupil position in Phase 3
(x of right eye: t(18) = 2.36, d = 1.19; x of left eye: t(18) = 2.36, d =
1.19; p <0.05).

Furthermore, the AP generally showed higher entropy than the
NP at all phases, and there was a significant difference in y coordi-
nates in Phase 3 (y of right eye: t(18) = 2.35, d = 1.18; y of left eye:
t(18) = 2.31, d = 1.16; p <0.05).

5.2.3 Region of interest (ROI)-based gaze rate. One of the charac-
teristics of people with ASD is their difficulty in making eye contact
or looking at faces when communicating with others [15, 30]. To
measure this characteristic, we used a region of interest (ROI), a
visual sample within the dataset identified for a specific purpose.
We set the faces of a customer and a manager as ROIs. We used the
box collider of Unity3D (See Figure 6) and measured whether a user
gazes at ROIs through Tobii G2oM 1, which is a machine learning
algorithm that accurately predicts the objects a user focuses on.
Fig. 7-(d) shows the percentage of time that the participants stared
at the ROI during training. We investigated the percentages for the
three timelines (i.e., the time of the entire scenario, the time when
the manager speaks, and the time when the customer speaks).

As a result of the t-test, the two groups showed differences in
Phases 2 and 3. In Phase 2, all timelines showed significant or
marginal significant differences (entire: t(18) = -2.84, d = 1.45; p
<0.05, manager: t(18) = -2.20, d = 1.09, p <0.05; customer: t(18) =
-1.93, d = 1.02, p = 0.06). In Phase 3, there was a significant difference
in the timeline of a manager and a customer (manager: t(18) = -2.26,
d = 1.10, p <0.05; customer: t(18) = -2.02, d = 0.96; p <0.05), and a
marginal difference in the timeline of the entire scenario (entire:
t(18) = -1.94, d = 0.97, p = 0.07). Overall, the NP showed better eye
contact than the AP throughout the entire training period.

5.3 Head movement
5.3.1 Head position. The head position includes values of 𝑥 (left-
right), 𝑦 (up-down), and 𝑧 (front-back). In all phases, the entropy of
the AP for all directions of the head position was higher than that
of the NP (Fig. 7-(e)). In Phases 1 and 2, there were no significant
differences. In Phase 3, the t-test results showed significant differ-
ences in all axes (𝑥 : t(18) = 2.31, d = 1.16; 𝑦: t(18) = 2.53, d = 1.26;
𝑧: t(18) = 2.23, d = 1.12; p <0.05). These results support empirically
noticeable behaviors by the AP during training (e.g., asking the
manager for help in customer complaints, moving to the coffee
machine in the back, and pretending to make coffee).

5.3.2 Head rotation. Head rotation includes three types: roll, pitch,
and yaw. Roll is the rotation to the𝑥-axis and refers to themovement
of the head (+/-: nodding forward/tilting one’s head back). Pitch
is the rotation to the 𝑧-axis and refers to the tilt of the head to the
left or right (+/-: tilting head to the left/right). Yaw is the rotation
to the 𝑦-axis, turning the face left or right and looking around (+/-:
standing upright and looking to the right/left). As the complexity

1https://vr.tobii.com/sdk/solutions/tobii-g2om/
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Figure 7: The mean differences in eye-tracking, head movement, physiological signals, and voice data between the AP and
the NP across three phases (*p <0.05, �p <0.1). The complexity of training increases over phases, and the results showed the
effectiveness of the VISTA design in eliciting the characteristics of people with ASD in VR-based training through a comparison
with the NP.
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increased, both groups showed a trend of entropy increases similar
to the head position (Fig. 7-(f)). Therewere no significant differences
between two groups in Phases 1 and 2. In Phase 3, the t-test showed
significant or marginal significant differences between two groups
for head rotation (roll: t(18) = 2.11, d = 1.05, p = 0.05; pitch: t(18) =
1.78, d = 0.89, p = 0.09; yaw: t(18) = 2.03, d = 1.01, p = 0.06).

These distinct differences between the two groups in head move-
ments indicate that relatively more physical movements were dis-
played by the AP in performing the same given task. This may be
due to their lack of social interaction skills, for example, exaggerated
gestures or behaviors in customer response situations.

5.4 Utterance rate
We collected the participants’ voice data using the microphone of
the HMD. We extracted and analyzed the speech rate to measure
utterances during the participant’s responses to the avatars. We
first extracted voice amplitudes from the recorded data. We then
extracted only the voices of the participants using dBFS, the magni-
tude of the recorded sound in a digital environment. We empirically
checked dBFS from -80 to -20 and set -45 dBFS to the threshold of
being silence or not (threshold ≤ -45 means silence), which best
extracts not only the spoken voice but also the murmur and filler
words (e.g., um, uh, ah, okay). We calculated the utterance rate as
the speaking time during the entire training period. We found that
the two groups showed a marginally significant difference (t(18) =
1.89, d = 0.19, p = 0.09) in Phase 3. No differences were found in
Phases 1 and 2 (Fig. 7-(g)).

Furthermore, we calculated the number of non-silence chunks,
based on the same top dB. We confirmed that there was a significant
difference between the two groups in Phase 3 (t(18) = 4.37, d = 1.66,
p <0.05). The NP showed more frequent moments of silence than
the AP. The NP were silent in situations when they did not need
to speak. By contrast, some AP tended to speak echolalia (e.g.,
repeating the customer’s word), speak to themselves, or use filler
words before serving a drink.

5.5 Physiological signals
We collected physiological signals to investigate emotional changes
according to training stimulation. When stimulated, the electrical
signal of the skin changes, which can be interpreted as a change in
emotion. Research indicates that EDA and BVP generally increase
when an individual becomes nervous [50, 65]. As shown in Fig. 7-
(h), t-test results showed significant differences in EDA (t(18) = 2.24,
d = 0.53, p <0.05) and BVP (t(18) = 2.21, d = 0.52, p <0.05) in Phase
3. There were no significant differences in HR and TMP.

6 DISCUSSION
The originality of VISTA is that it reflects the characteristics of
people with ASD, follows design guidelines for them, and provides
an interactive VR training environment. These aspects have been
somewhat neglected or less considered in many previous studies.
In our study, the AP showed positive responses regarding their
experience in VISTA, and we found significant differences in sensor
data between the two groups. All sensor data except the gaze rate
and the utterance rate were analyzed based on the notion of entropy,
which represents the degree of variations of sensor signals and has

been used in many prior studies [55, 58, 74, 76] as an evaluation
metric. We wanted to verify whether such variations were more
prominent by the AP than the NP and well capture characteristics
of AP. The next important step is to understand the meaning of the
analysis results of the sensor data generated through VISTA. We
interpret the results by referring to the findings of previous studies.
Although our findings may not be directly interpreted relative to
the findings in previous studies (because VR systems, VR content,
and study conditions are quite different between our study and
previous studies), it is possible to assess key sensor types that have
been well characterized the AP across studies in different systems
and experimental conditions and to obtain insights that have been
less considered in previous studies.

6.1 Reaffirmation of ASD characteristics
In our study, three sensor signals – (1) ROI, (2) head rotation, and
(3) EDA – showed similar results to those of previous studies.

People with ASD have a common difficulty inmaking eye contact
with others due to their lack of social skills [15, 30]. Many studies
have employed ROI and measured the ROI-based gaze rates of AP
compared to those of NP [10, 60]. Similarly, in our study, the AP’s
gaze rate was lower than that of the NP at all phases, and the gaze
rates of the two groups showed significant differences in Phases
2 and 3. Regarding head rotations, the AP showed higher results
than the NP, similar to previous studies [60, 84]. Further, the EDA
level was significantly higher in the AP than in the NP, similar to
the results collected in VR-based bus-taking training [65].

The consideration of and similar results shown in those three
sensor signals over many studies (including ours) indicate the im-
portance and clear role of those sensor signals in reflecting the
characteristics of people with ASD to some extent. Research that
has the same goal and methodology as ours may need to consider
those sensors. Apparently, with VR training systems that well fol-
low design guidelines for people with ASD, it is also important to
consider additional verification of those sensor signals with more
subjects and in different training settings. We believe that such
efforts are needed to make sensor data analyses useful in clinical
assessment and application.

6.2 Additional insights from our study
Additional sensor signals showed significant differences between
the two groups in our study. These sensors were either partially
(due to limited study conditions) or not covered in previous studies.

First, studies on measuring pupil features have been conducted
in a non-training context, such as the evaluation of emotional cog-
nition [26, 71] and the diagnosis of light responses [20, 75] with a
short period of time (e.g., 10-20 seconds). However, in our study,
we investigated changes in pupil diameter over a few minutes. Two
user groups showed significant differences in pupil diameter, pupil
position, and eye openness in Phase 3. As the variation of pupil
diameter is positively related to the level of cognitive load [36, 44],
we could conclude that the AP generally felt higher cognitive load
in Phase 3 than the NP. This also further suggests that the AP were
more engaged in VR training, as shown in their survey responses.

Second, unlike head rotations, head positions have rarely been
used because previous VR training studies on people with ASD did
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not consider the support of interactive and immersive components,
limiting participants’ head movement. Since VISTA supported par-
ticipants in performing tasks in an interactive environment, head
positions were identified as valid data points, and significant differ-
ences were found in Phase 3. For the utterance rate, we confirmed
that the AP showed a higher rate than the NP in Phase 3. These find-
ings seem all related and extractable from our study, because the
participants were involved in a more flexible, interactive training
environment through VISTA.

Since VISTA is an interactive VR training system that complies
with key design guidelines, we discovered new insights into the
aforementioned sensor signals. Further, those sensor signals that
were highlighted in our study can be collected from the HMD;
thus, the accessibility of those signals is high. Future studies are
needed to verify the role of these sensor signals in quantifying and
understanding the characteristics of people with ASD in different
VR training scenarios.

6.3 Limitation and future work
The limitations of our study, which can be considered in future
work, are as follows. First, due to the small sample size (10 ASD
participants), it may be difficult to derive a generalizable interpre-
tation of the sensor data collected in VISTA. While the number of
participants in our study is comparable to that of previous stud-
ies [2, 40, 60], our study participants may not represent the ASD
population; thus need more participants in various training scenar-
ios to make our findings more convincing. Although our training
content was decided with a series of discussions with ASD experts,
another limitation is the lack of diversity in VISTA’s training con-
tent. Social skills training for people with ASD can be conducted
in various workplace environments (e.g., library, grocery store).
Therefore, it is necessary to additionally verify whether the VR
training system that follow the design guidelines helps the partici-
pant feel immersive and engaged in training and positively affects
their self-efficacy and whether the sensor signal results collected in
various training situations are analogous to those of our study. We
plan to recruit more participants, run the study, validate the find-
ings in this study, and expand the experiment with more training
scenarios.

Sensor signals generated during the VR training experience can
be used to develop machine learning models for predicting the
states of AP in the future. Specifically, if we identify embarrassing
moments that people with ASD experience during VR training and
develop a model to predict such moments based on the collection
and learning of sensor signals, we will be able to more compre-
hensively understand and support the situation in which people
with ASD may suffer. Furthermore, the results of sensor signals
can be used as important information for medical professionals
or caregivers to identify the physical or psychological changes in
people with ASD.

7 CONCLUSION
This paper presents VISTA, a VR-based interactive social skills train-
ing system for people with ASD. To investigate the feasibility of
VISTA that built on VR system guidelines for people with ASD, we

conducted a user study with 10 people with ASD and 10 neurotyp-
ical people. Our study results revealed that VISTA provided posi-
tive training experiences, and the sensor signals collected through
VISTA well described ASD characteristics. These results confirmed
the effective design of VISTA in offering gradual task complexities,
immersive VR experiences, and interactive components. Further-
more, we expanded our understanding of sensor signals generated
by people with ASD during VR training. In summary, our study
emphasizes the importance of identifying and following key design
guidelines for the development of VR training systems. Our study’s
methodology and findings can be used to guide other studies in
designing a tool to support social independence for people with
ASD or people who are in need.
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