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ABSTRACT
Motivated by a success of generative adversarial networks (GAN)
in various domains including information retrieval, we propose a
novel signed network embedding framework, ASiNE, which repre-
sents each node of a given signed network as a low-dimensional
vector based on the adversarial learning. To do this, we first design
a generatorG+ and a discriminator D+ that consider positive edges,
as well as a generator G− and a discriminator D− that consider
negative edges: (1) G+/G− aim to generate the most indistinguish-
able fake positive/negative edges, respectively; (2) D+/D− aim to
discriminate between real positive/negative edges and fake posi-
tive/negative edges, respectively. Furthermore, under ASiNE, we
propose two new strategies for effective signed network embedding:
(1) an embedding space sharing strategy for learning both positive
and negative edges; (2) a fake edge generation strategy based on the
balance theory. Through extensive experiments using five real-life
signed networks, we verify the effectiveness of each of the strate-
gies employed in ASiNE. We also show that ASiNE consistently and
significantly outperforms all the state-of-the-art signed network
embedding methods in all datasets and with all metrics in terms of
accuracy of sign prediction.
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1 INTRODUCTION
Network embedding (NE) aims to represent nodes of a given network
by vectors preserving structural properties [17], such as proxim-
ity in the network space, in a single low-dimensional embedding
space [7]. Literature has shown that the low-dimensional vectors
can be used as effective features for nodes in solving various ma-
chine learning tasks related to information retrieval (IR) including
edge prediction [25], node clustering [38], node classification [33],
and recommendation [6, 14, 22]. Examples of NE methods include
DeepWalk [31], Node2vec [11], LINE [34], GCN [12], and Graph-
GAN [36]. Intuitively, each example attempts to represent the nodes
in the proximity located closely each other in the embedding space.

With the emergence of signed networks with both positive and
negative edges between nodes, we can better understand the com-
plex relationships between the nodes based on rich information
obtained from the edge signs [15, 20, 21, 24]. For example, on a
product review website, Epinions1, a user can decide whether to
trust (i.e., positive edges) or distrust (i.e., negative edges) others.
However, since existing unsigned NE methods [11, 12, 31, 34, 36]
assume that there is only one type of edges (i.e., positive edges) in
the network, they have inherent limitations in effectively utilizing
the rich information provided by such signed networks.

To address these limitations, many researchers have extended
existing unsigned NE methods to signed networks, named as signed
NE [9, 18, 23, 37, 39, 40]. Examples include SNE [40], SIDE [18],
SGCN [9], and SLF [39]. Basically, they attempt to represent the
nodeswith the positive edges to be close and thosewith the negative
edges to be distant in the embedding space. Furthermore, they
employ a balance theory [3, 13], a well-known theory in social
sciences, to exploit more complex relationships between nodes by
combining positive and negative edges. The balance theory states
that social relationships of the real world follow four rules: “a friend
of my friend is my friend,” “a friend of my enemy is my enemy,” “an
enemy of my friend is my enemy,” and “an enemy of my enemy is
my friend.” Most signed NE methods [9, 18] regard the friends and
enemies newly identified by the balance theory as inherent positive
and negative edges, respectively.

However, they have focused only on building either a genera-
tive [18, 39, 40] or discriminative model [9]. Recently, Goodfellow
et al. [10] proposed generative adversarial networks (GAN) that
combine generative and discriminative models to play a minimax
game. The adversarial learning approaches, including GAN and its
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variants, have already been successful in many applications such
as IR [26], image generation [8], and recommendation [4, 5]. Mo-
tivated by such a success, Wang et al. [36] proposed an excellent
idea of GraphGAN which is a variant of GAN for the unsigned NE.
In [36], they showed that the adversarial learning helps to improve
the performance of NE by making the generator learn an under-
lying connectivity distribution of an unsigned network under the
guidance provided by the discriminator. Nevertheless, GraphGAN
does not take into account the edge signs, thereby being applicable
only to unsigned networks.

Therefore, we propose a novel signed NE method, named as
ASiNE, which can represent nodes of a signed network as low-
dimensional vectors based on adversarial learning. To do this, we
first divide the given signed network G into a subgraph G+ con-
sisting of all nodes and only positive edges and a subgraph G−

consisting of all nodes and only negative edges. Then, we design
two generator modelsG+/G− and two discriminator modelsD+/D−
that can play aminimax game in G+/G−, respectively. The final goal
of this minimax game is to make G+/G− learn the underlying posi-
tive/negative connectivity distribution of G+/G− under the guidance
provided by D+/D−. Towards this goal, ASiNE learns each of the
four models as follows:

• G+/G− aim to generate the most indistinguishable fake posi-
tive/negative edges by considering both the structure of G+/G−
and the balance theory, respectively.
• D+/D− aim to discriminate between real positive/negative edges
and fake positive/negative edges, respectively.

In the above learning process,G+ tries to represent the two nodes
incident to a fake positive edge to be close in the embedding space;
G− tries to represent the two nodes incident to a fake negative
edge to be distant. On the other hand, D+ tries to represent the two
nodes incident to real and fake positive edges to be close and distant,
respectively;D− tries to represent the two nodes incident to real and
fake negative edges to be distant and close, respectively. To reflect
positive and negative edges together, we propose an embedding
space sharing strategy in which G+ and G− share one embedding
space for generation and D+ and D− share another embedding space
for discrimination.

Note thatG+ andG− generate fake positive and negative edges
from G+ and G−, respectively. However, we can letG− also generate
fake positive edges from G− by exploiting “an enemy of my enemy
is my friend” of the balance theory. Thus, in this paper, we propose
a strategy in which G− generates not only fake negative edges but
also fake positive edges. The fake positive edges generated by G−
help us fully learn rich information of G−.

Through extensive experiments using five real-life datasets, we
validate the effectiveness of ASiNE. The experimental results show
that (1) our strategies used in ASiNE for signed NE are all effective
for more-accurate embedding, (2) ASiNE consistently and signif-
icantly outperforms all four state-of-the-art signed NE methods,
SNE [40], SIDE [18], SGCN [9], and SLF [39], in terms of the accu-
racy of edge sign prediction, and (3) ASiNE has a linear scalability
with the increasing number of edges.

Our contributions are summarized as follows:

• We propose a novel signed NE method, ASiNE, based on adver-
sarial learning. To the best of our knowledge, this paper is the
first attempt that utilizes adversarial learning for signed NE.
• We design the objective functions of our generators G+/G− and
discriminators D+/D−, which allow to play a minimax game in
G+/G−.
• We propose a strategy in which G+ and G− learn one shared
embedding space and D+ and D− learn another shared embedding
space to reflect positive and negative edges together.
• We propose a strategy in which G− generates not only fake
negative edges but also fake positive edges from G−.
• Through extensive experiments using five real-life datasets, we
validate the effectiveness of ASiNE, showing ASiNE improves the
accuracies of the competing methods significantly in all cases.

The rest of this paper is organized as follows: Section 2 reviews
existing work for NE. Section 3 presents our proposed approach in
detail. Section 4 validates the effectiveness of the proposed approach
through extensive experiments. Finally, Section 5 concludes the
paper and discusses future research directions.

2 RELATEDWORK
The learning process of most NE methods can be summarized in the
following two steps: (1) edge sampling that determines node pairs
with strong relationships and (2) likelihood optimization that tries to
place them preserving the pair-wise relationships in the embedding
space. In this section, we briefly review the representative unsigned
and signed NE methods by focusing on the above two steps.
Unsigned network embedding. DeepWalk [31] obtains node se-
quences for each target node vc with a truncated random walk,
and samples the context nodes for each node within the sequences.
Then, it optimizes the likelihood of observing the context nodes for
each node. Node2vec [11] extends the idea of DeepWalk. It obtains
node sequences for each target node vc with a biased random walk
that considers breadth first search (BFS) and depth first search (DFS)
together. Then, it performs likelihood optimization in the same way
as DeepWalk.

Unlike DeepWalk and Node2vec, LINE [34] randomly samples
directly connected nodes for each node vc . Then, it designs two
objective functions that preserve first- and second-order proximities
using the sampled edges. It obtains two kinds of node embeddings
by minimizing these two objectives, and take their concatenation
as the final node embedding.

Recently, graph convolutional network (GCN) [12] exploits all
edges of the network without edge sampling. It iteratively aggre-
gates the embeddings of direct neighbors (i.e., local neighborhood)
for each target node vc by defining a convolution operator on the
network. Multiple iterations allow the learned embedding of vc to
consider both global and local neighborhoods.

GraphGAN [36] leverages GAN [10] to facilitate NE. It works
through two components: (1) generator G(v |vc ), which tries to
generate the likely connected nodes obtained from random walks,
and (2) discriminator D(v,vc ), which tries to differentiate the node
pairs generated byG(v |vc ) from the ground truth. Under the Graph-
GAN framework, the discriminator maximizes the likelihood for
real edges, while the generator maximizes the likelihood for sam-
pled fake edges. In [36], the authors showed that the adversarial
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Figure 1: Overview of the ASiNE framework.

learning helps to improve the performance of NE by optimizing the
generator under the guidance provided by the discriminator.

Although the aforementioned studies provided important in-
sights on NE, their approaches are applicable only to unsigned
networks.
Signed network embedding. SNE [40] and SIDE [18] extend the
ideas of DeepWalk and Node2vec. First, SNE [40] samples context
nodes for each target node vc based on a truncated random walk.
Then, it optimizes the likelihood of observing the context nodes for
each node based on the extended log-bilinear model [29]. However,
it does not consider the balance theory.

SIDE [18] obtains node sequences for each target node vc with a
truncated random walk. Then, it samples node pairs with a positive
sign and those with a negative sign in the sequences by considering
the balance theory. It optimizes the likelihood for node pairs with
positive and negative signs.

SGCN [9] extends GCN. Similar to GCN, SGCN does not perform
node sampling, but utilizes all the direct neighbors of each target
node vc . Then, to consider multi-hop neighbors for vc , SGCN uti-
lizes the balance theory to correctly aggregate and propagate the
sign information across layers of their GCN model.

Lastly, SLF [39] extends latent-factor models [19]. It performs
two types (i.e., positive and negative) of node embeddings (i.e.,
not a single embedding) for each target node vc . First, it samples
node pairs between vc and all nodes directly connected to vc , and
optimizes embeddings of the two nodes incident to the sampled
node pair based on its sign. Finally, it takes a combination of two
node embeddings as the final node embedding.

In summary, most signed NE methods have been successfully
applied to signed networks by extending the ideas of unsigned
NE methods. However, although the adversarial learning has been
verified by GraphGAN to be effective for unsigned NE, none of the
above methods employ the adversarial learning for signed NE.

3 PROPOSED APPROACH
3.1 Overview
The signed NE problem is formulated as follows: Let G= (V ,E+,E−)
be a given signed network, where V = {v1,v2, · · · ,vn } represents
the set of n nodes and E+ and E− represent the sets of positive
and negative edges, respectively. Note that E+ ∩ E− = ∅, a node
pair cannot have both positive and negative edges simultaneously.
Signed NEmethods aim to learn a function f : V → Rk whichmaps
each node v ∈ V to a k-dimensional vector. Table 1 summarizes a
list of notations used in this paper.

In this section, we propose a novel signed NE method, ASiNE,
based on adversarial learning. Figure 1 shows the overview of an
ASiNE framework. We first divide a given signed network G into
a subgraph G+, consisting of V + and E+, and a subgraph G−, con-
sisting of V − and E− (Figure 1-(a)). Then, we train two generators
G+/G− and two discriminators D+/D− using G+/G−: (G+, D+) and
(G−, D−) act as two pairs of opponents in the four-player minimax
game.

Under the guidance provided by D+/D−, G+/G− generate fake
positive/negative edges, respectively, through the biased random
walk that considers the proximity by positive and negative edges
(Figure 1-(b)). Further,G− additionally generates fake positive edges,
by considering “an enemy of my enemy is my friend” of the balance
theory. In this generation process, G+/G− maximize the likelihood
for fake positive/negative edges in their shared embedding space,
respectively.

As shown in Figure 1-(c),D+/D− discriminate fake positive/nega-
tive edges generated from G+/G−, and real positive/negative edges
sampled directly from G+/G−, respectively. In this discrimination
process, D+/D− maximize the likelihood for real positive/negative
edges, respectively, while minimizing that for fake positive/negative
edges in their shared embedding space, respectively.

Session 4A: Query and Representation  SIGIR ’20, July 25–30, 2020, Virtual Event, China

611



SIGIR ’20, July 25–30, 2020, Virtual Event, China Lee et al.

Table 1: Notations used in this paper

Notation Description
G Signed network

V , V +, V − Sets of nodes, nodes with at least one positive
edge, and nodes with at least one negative edge

E, E+, E− Sets of edges, positive edges, and negative edges
G+, G− Subgraphs consisting of v and only E+/E−

T+vc , T
−
vc BFS-trees rooted at vc in G+/G−

N+vc (v), N
−
vc (v) Sets of nodes directly connected tov inT +vc /T

−
vc

Path+vc→v , Path−vc→v Unique paths from vc to v in T +vc /T
−
vc

D+(v,vc ;θD ),
G+(v |vc ;θG )

Discriminator and generator for G+

D−(v,vc ;θD ),
G−(v |vc ;θG )

Discriminator and generator for G−

dv ,дv ∈ Rk
k -dimensional representation vectors of v in
discriminators D+/D− and generators G+/G−

θD ,θG ∈ R |V |×k Union of all dv and дv

p+true (v |vc ), p−true (v |vc )
Underlying true positive and negative connec-
tivity distribution of vc over all other nodes v .
N+vc (vc )/N

−
vc (vc ) can be seen as a set of observed

nodes sampled from p+true (v |vc )/p
−
true (v |vc ).

p+T +vc
(vj |vi ), p−T −vc (vj |vi ) Positive and negative relevance probability of vj

for given vi in T +vc /T
−
vc

The intuition of employing the adversarial learning for signed
NE is as follows. The competition in this minimax game derives
both the generators and the discriminators to help each other to
achieve their own goals until the generators produce plausible fake
edges that can deceive the discriminators eventually. In other words,
the nodes in the shared embedding space forG+ andG− are located
in such a way to preserve the proximity in both G+ and G−, which
is the eventual goal of signed NE. Therefore, we use the vectors of
the nodes represented in the shared embedding space as their final
representation vectors.

3.2 ASiNE framework
Overall objective. Given the subgraphs G+ and G−, we aim to
learn the following four models (i.e., two generators and two dis-
criminators):
• Generator G+(v |vc ;θG ) for G+: This model aims to generate the
most likely nodes to be positively connected with a givenvc from
V + by approximating p+true (v |vc ).
• Generator G−(v |vc ;θG ) for G−: This model aims to generate the
most likely nodes to be negatively connected with a given vc
from V − by approximating p−true (v |vc ).
• Discriminator D+(v,vc ;θD ) for G+: This model aims to discrimi-
nate labels (i.e., real or fake) for the node pairs (v,vc ) by estimat-
ing the positive connectivity for the pairs.
• Discriminator D−(v,vc ;θD ) for G−: This model aims to discrimi-
nate labels (i.e., real or fake) for the node pairs (v,vc ) by estimat-
ing the negative connectivity for the pairs.
The generators G+/G−and discriminators D+/D− are combined

with playing a minimax game. In a shared embedding space, G+
embeds two nodes incident to a fake positive edge to be close, and
G− embeds those incident to a fake negative edge to be distant. On
the other hand, in another shared embedding space, D+ embeds two
nodes incident to a real positive edge to be close and those incident

to a fake positive edge to be distant; D− embeds two nodes incident
to a real negative edge to be distant and those incident to a fake
negative edge to be close.

Formally, (G+, D+) and (G−, D−) act as two pairs of opponents in
the following four-player minimax game with the joint loss function
L(G+, G−, D+, D−):

min
θG

max
θD

L(G+, G−, D+, D−)

=
∑

vc ∈V +
((Ev∼p+true (·|vc ))

[
loдD+(v, vc ; θD )

]
+ (Ev∼G+(·|vc ;θG ))

[
loд(1 − D+(v, vc ; θD ))

]
)

+
∑

vc ∈V −
((Ev∼p−true (·|vc )) [loдD

−(v, vc ; θD )]

+ (Ev∼G−(·|vc ;θG )) [loд(1 − D
−(v, vc ; θD ))]).

(1)

Note that, to learn both positive and negative edges, G+ and
G− update the parameters (i.e., θG ) in a shared embedding space,
and D+ and D− update the parameters (i.e., θD ) in another shared
embedding space.2 Here, we could design four models, G+, G−,
D+, and D−, in four embedding spaces to update parameters in
their own embedding space, individually. Then, we can get the
final representation vectors of nodes by combining (e.g., concatena-
tion, average) the two vectors learned byG+ andG− for each node.
However, we believe that learning the proximity of both positive and
negative edges together in a shared embedding space helps to con-
sider complex relations involving both positive and negative signs
between nodes. We will verify the effectiveness of the embedding
space sharing strategy in RQ1 of Section 4.2.
Discriminator optimization. Based on Eq. (1), we need to learn
parameters θD and θG for discriminators and generators, respec-
tively. To do this, we discuss the implementation and optimization
of discriminators. Given real and fake positive edges, D+ aims to
maximize the log-probability of correctly classifying these edges.
Similarly, given real and fake negative edges, D− aims to maximize
the log-probability of correctly classifying these edges. We can de-
fine D+ and D− as any functions such as sigmoid and SDNE [35].
Following [16, 32, 36], we present implementations of D+ and D−
for a given node pair (v,vc ) with the sigmoid function as follows3:

D+(v, vc ) = σ (d⊤vdvc ) =
1

1 + exp(−d⊤vdvc )
, (2)

D−(v, vc ) = 1 − σ (d⊤vdvc ) = 1 − 1
1 + exp(−d⊤vdvc )

. (3)

Note that D+(v,vc ) and D−(v,vc ) indicate the predicted positive
and negative connectivity for (v,vc ), respectively. Finally, given
real edges (i.e., E+/E− existing in G+/G−, respectively) and fake
edges (i.e., node pairs unconnected in G+/G−) (v,vc ) forD+ andD−,
respectively, ASiNE updates dv and dvc by ascending the gradient
with respect to them:

2One can be worried that a node pair is generated as a fake positive edge by
G+ and as a fake negative edge by G− at the same time. In this case, our sharing
strategy makes G+/G− embed the two nodes in the pair to be close/distant in the
shared embedding space. This could be repeatedly performed in the training process,
causing meaningless learning. However, we observed that such a contradictory case
very rarely occurred (e.g., 0.08% among all fake edges in the case of the Bitcoin-Alpha
dataset) in fake positive/negative edges generated by G+/G− . This is because G+/G−
have different underlying connectivity distributions p+true /p

−
true to generate the fake

positive/negative edges.
3Although we can define D+ and D− with other functions, examining the superi-

ority between these functions is not the scope of this paper.
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∇θDL(G
+,G−,D+,D−)

=


∇θD loдD+(v,vc ), if (v,vc ) is a real positive edge from G+,

∇θD (1 − loдD+(v,vc )), if (v,vc ) is a fake positive edge from G+,

∇θD loдD−(v,vc ), if (v,vc ) is a real negative edge from G−,

∇θD (1 − loдD−(v,vc )), if (v,vc ) is a fake negative edge from G−.
(4)

Generator optimization.We discuss the implementation and op-
timization of generators. Given fake positive edges, G+ aims to
minimize the log-probability that D+ correctly assigns fake labels
to the edges. Similarly, given fake negative edges, G− aims to min-
imize the log-probability that D− correctly assigns fake labels to
the edges. For the implementation of G+, we can employ any func-
tions such as hierarchical softmax [30], negative sampling [28], and
graph softmax [36]. In this paper, we present an implementation of
G+ with the graph softmax [36] which is known to satisfy useful
properties such as graph-structure-awareness and computational
efficiency.4

To do the graph softmax, we first make a breadth-first-search
(BFS) tree T+vc rooted at a target node vc in G+. Given T+vc , we find
a set N+vc (vc ) of the nodes directly connected to vc . Then, given
a node vc and its neighbor vi ∈ N+vc (vc ), we define the positive
relevance probability p+T +vc

(vi |vc ) ofvi for givenvc inT+vc as follows:

p+
T+vc
(vi |vc ) =

exp(д⊤vi дvc )∑
vj ∈N+vc (vc )

exp(д⊤vj дvc )
. (5)

which is actually a softmax function over N+vc (vc ). Note that p
+
T +vc

can be defined only for the node pairs directly connected in T+vc .
However, we need to generate the node pairs unconnected inT+vc as
fake positive edges. To compute the graph softmaxG+(v |vc ) for the
unconnected node pairs (v |vc ), we denote a unique path from vc
to v at T+vc as Path+vc→v = (vr0 ,vr1 , · · · ,vrm ) where vr0 = vc and
vrm = v . Based on Path+vc→v , we define G+(v |vc ) as follows [36]:

G+(v |vc ) =
m∏
j=1

p+
T+vc
(vrj |vrj−1 ). (6)

Here, G+(v |vc ) decreases with the increase of the distance be-
tween v and vc in G+ [36]. In other words, we can obtain an ap-
proximated positive connectivity probability that preserves the
proximity in G+.

Next, for the implementation ofG−, we extend the graph softmax
to exploit the balance theory. Similar toG+, we first make a BFS tree
T−vc rooted at a target node vc in G−. Also, we find a set N−vc (vc )
of nodes directly connected to vc in T−vc . Using N

−
vc (vc ), we define

the positive relevance probability p+T −vc
(vi |vc ) of vi for given vc in

T−vc as follows:

p+T−vc
(vi |vc ) =

exp(д⊤vi дvc )∑
vj ∈N−vc (vc )

exp(д⊤vj дvc )
. (7)

Based onp+T −vc (vi |vc ), we define the negative relevance probability
p−T −vc
(vi |vc ) of vi for given vc in T−vc as follows:

p−T−vc
(vi |vc ) =

1 − p+T−vc (vi |vc )∑
vj ∈N−vc (vc )

(1 − p+T−vc (vj |vc )
. (8)

4Although we can define G+ with other functions, examining the superiority
between these functions is not the scope of this paper.

As inG+, we need to generate the node pairs unconnected inT−vc
as fake negative edges. To do this, we denote a unique path from vc
to v at T−vc as Path−vc→v = (vr0 ,vr1 , · · · ,vrm ) where vr0 = vc and
vrm = v . Based on Path−vc→v , we define G−(v |vc ) as follows:

G−(v |vc ) =
m∏
j=1

p−T−vc
(vrj |vrj−1 ). (9)

Note that, based on the balance theory, the signs for relationships
of unconnected node pairs (v,vc ) in T−vc can be determined by the
number of edges in Path−vc→v . More specifically, the sign is given
negative if there are an odd number of edges along Path−vc→v while
it is given positive if there are an even number of edges. Likewise,
our extended graph softmaxG−(v |vc ) is designed so that its output
can be either a positive connectivity probability (i.e., if m is an
even number) or a negative connectivity probability (i.e., if m is
an odd number) depending on the number of edges (=m) between
v and vc . In addition, G−(v |vc ) decreases with the increase of the
distance between v and vc in G−. In other words, we can obtain
an approximated positive or negative connectivity probability that
preserves the proximity in G−. Thus, based on G−(v |vc ), we can
generate fake positive edges as well as fake negative edges. We will
explain more specifically how to generate fake edges in Section 3.3.

Finally, given fake positive/negative edges (v,vc ) for G+/G−,
respectively, we compute the gradient of L(G+, G−, D+, D−) with
respect to θG by policy gradient [36] as follows:

∇θG L(G
+,G−,D+,D−)

=


∇θG loдG+(v |vc )loд(1 − D+(v,vc )),

if (v,vc ) is a fake positive edge from G+,

∇θG loдG−(v |vc )loд(1 − D−(v,vc )),
if (v,vc ) is a fake negative edge from G−.

(10)

3.3 Fake edge generation
Now, we need to decide the edges that G+, G−, D+, and D− will
learn based on the above optimization functions. In the case of
real positive and negative edges, we simply select the node pairs
(v,vc ) where v is directly connected to a target node vc in G+ and
G−, respectively, whereas in the case of fake positive and nega-
tive edges, we should newly generate the unconnected node pairs
based onG+(v |vc ) andG−(v |vc ), respectively. However, it is a very
time-consuming task to calculate G+(v |vc ) and G−(v |vc ) of all un-
connected node pairs and to find the node pairs with the highest
probability among them.

Therefore, in this section, we discuss how to efficiently generate
fake positive and negative edges. Inspired by GraphGAN [36], we
propose a random-walk-based generation strategy that considers
the balance theory as well as the positive and negative relevance
probabilities of node pairs.
Generation of fake positive edges from G+. First, the steps to
generate fake positive edges in G+ are as follows:
• Given a target node vc , we perform a biased random walk that
starts from vc at T+vc and considers the positive relevance proba-
bility defined in Eq. (5).
• The random walk repeats until the walker revisits the same node
that the walker has visited before.
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Figure 2: Generation of fake edges from G−.

• We define a random-walk path Path+vc→v from vc to the node v
(the previous node of the revisited node) and select the node pair
(vc , v) for vc and the last node v of Path+vc→v for a fake positive
edge.
For example, suppose there is a random-walk path Path+vc→v =

(vr0 ,vr1 ,vr2 ,vr3 ) where vr0 = vc and vr3 = v that satisfies the
above termination condition. In Path+vc→v , G+ generates a node
pair (vr0 ,vr3 ) as a fake positive edge. Note that G+ can generate
fake positive edges only since G+ only has positive edges inside.5
Generation of fake negative edges from G−. The steps to gen-
erate fake negative edges in G− are as follows:
• Given a target node vc , we perform a biased random walk that
starts from vc at T−vc and considers the negative relevance proba-
bility defined in Eq. (8).
• The random walk repeats until the walker revisits the same node
that the walker has visited before.
• We define a random-walk path Path−vc→v from vc to the node
v (the previous node of the revisited node) and select a fake
negative edge in Path−vc→v based on the following two aspects
of the balance theory:
– If there are an odd number of edges in Path−vc→v , a node pair
(v,vc ) for vc and the last node v is selected as a fake negative
edge (Figure 2-(a)).

– If there are an even number of edges in Path−vc→v , a node pair
(v,vc ) for vc and the second last node v is selected as a fake
negative edge (Figure 2-(b)).

Here, we discuss the termination condition of our random-walk-
based generation strategy. Unlike existing random-walk-based signed
NE methods [18, 40] that generate paths of a fixed length, our strat-
egy can generate paths of variable lengths according to the termi-
nation condition. To address this issue, we examine the distribution
of the path lengths generated by our strategy. Figure 3 shows the
results from the Bitcoin-Alpha and WikiRfA datasets.6 The x-axis
represents the path length and the y-axis does the ratio of the paths
having a length. We see that most paths (i.e., 97% for Bitcoin-Alpha
and 99% for WikiRfA) have the lengths less than 6. The results indi-
cate that the paths generated by our strategy have the lengths that
are short and are similar to one another. Furthermore, we tried to
generate the paths of a fixed length as in [18, 40]. However, in spite

5To generate a fake negative edge, the balance theory requires negative edges
in the path (i.e., “a friend of my enemy is my enemy,” “an enemy of my friend is my
enemy”).

6Due to space limitations, we omit the results for other datasets, which showed a
tendency similar to those in Figure 3.
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Figure 3: Distribution of the path lengths.
of extensive experiments, we could not obtain any positive results
verifying that this generation strategy contributes to improve the
accuracy of ASiNE.
Generation of fake positive edges fromG−.We have presented
how to generate fake positive/negative edges in G+/G−, respectively.
In this section, we propose a strategy of generating fake positive
edges from G− by using “an enemy of my enemy is my friend” of the
balance theory. To do this, in Path−vc→v , we select a fake positive
edge according to the following two aspects of the balance theory:
• If there are an odd number of edges in Path−vc→v , a node pair
(v,vc ) for vc and the second last node v is selected as a fake
positive edge (Figure 2-(a)).
• If there are an even number of edges in Path−vc→v , a node pair
(v,vc ) for vc and the last node v is selected as a fake positive
edge (Figure 2-(b)).
The fake positive edges generated by G− enable us fully learn

rich information of G−. To update the parameters θD and θG for the
node pairs (v,vc ) incident to the fake positive edges, we compute
the gradients for them as follows. If (v,vc ) is a fake positive edge
from G−:

∇θD L(G+, G−, D+, D−) = ∇θD (1 − loдD
+(v, vc )). (11)

∇θG L(G+, G−, D+, D−) = ∇θG loдG−(v |vc )loд(1 − D+(v, vc )). (12)

There are an even number of negative edges in Path−vc→v be-
tween the two nodes (v,vc ) incident to the fake positive edge.
Therefore, we update the parameters θG based on G−(v,vc ) (i.e.,
rather than 1−G−(v,vc )) becauseG−(v,vc ) already indicates a posi-
tive connectivity probability by Eq. (9). Here, we note thatG+(v,vc )
cannot be used because it can be defined only when a path between
vc and v exists in T+vc . Since we generate the fake positive edge
(v,vc ) from T−vc , there may not be a path between them in T+vc . In
RQ3 of Section 4.2, we will validate that the additional generation
of fake positive edges from G− helps to improve the performance
of the signed NE.

Finally, Algorithm 1 shows the overall process of our ASiNE
framework. We summarize a single adversarial training procedure
for target node vc in the ASiNE framework as follows: (1) fake
edge generation: ASiNE generates two fake positive edges (from G+

and G−) and a fake negative edge (from G−) by performing a single
randomwalk process inT+vc andT

−
vc , respectively

7; (2) discriminator

7Since the number of positive edges is greater than that of negative edges in
real-life signed networks, we generate more fake positive edges than fake negative
edges. We also conducted additional experiments in a setting that generates equal
numbers of fake positive and negative edges; however, there was no difference in
accuracies between this setting and our original setting. To reduce the training time of
ASiNE without sacrificing the accuracy, we recommend to set the ratio of fake positive
and negative edges as 2:1.
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Algorithm 1 ASiNE framework
Input: embedding dimensionality k , size of generating edges д, size of discriminating
edges d , number of epochs e , number of iterations for generators and discriminators
per epoch i , window sizew
Output: G+(v |vc ; θG ), G−(v |vc ; θG ), D+(v, vc ; θD ), D−(v, vc ; θD )
1: Initialize θD and θG
2: Divide G into G+ and G−
3: Construct BFS trees T +vc and T −vc for all vc ∈ V
4: for epoch ← 1 to e do
5: for vc ∈ V do
6: for iter ← 1 to i do ◃ D+-step
7: Sample d real positive edges from G+

8: Generate d fake positive edges fromG+(v |vc ; θG )
9: Update θD via Eqs. (2), (3), and (4)
10: end for
11: for iter ← 1 to i do ◃ G+-step
12: Generate д fake positive edges fromG+(v |vc ; θG )
13: Sample all node pairs exsiting withinw in paths
14: Update θG via Eqs. (5), (6), and (10)
15: end for
16: for iter ← 1 to i do ◃ D−-step
17: Sample d real negative and d real positive edges from G− and G+

18: Generated fake negative andd fake positive edges fromG−(v |vc ; θG )
19: Update θD via Eqs. (3) and (4) (i.e., negative edges), and Eqs. (2) and (11)

(i.e., positive edges)
20: end for
21: for iter ← 1 to i do ◃ G−-step
22: Generateд fake negative andд fake positive edges fromG−(v |vc ; θG )
23: Sample all node pairs exsiting withinw in paths
24: Update θG via Eqs. (8), (9), (10) (i.e., negative edges), and (12) (i.e.,

positive edges)
25: end for
26: end for
27: end for

optimization: ASiNE provides fake and real edges to D+ and D− to
classify them. Then, it updates their parameters θD based on the
classification results; (3) generator optimization: ASiNE updates
the parameters θG for node pairs corresponding to fake positive
and negative edges. In addition, it updates the parameters θG for all
node pairs existing within a window of sizew in the random-walk
paths. Apparently, we update θG for the node pairs existing within
w in the paths obtained from G− by considering their sign.

3.4 Discussions
We discuss the characteristics of ASiNE in comparisons with Graph-
GAN [36]. ASiNE is based on the excellent philosophy of Graph-
GAN. However, we would like to highlight that ASiNE is not just a
straightforward extension of GraphGAN but incorporates three of
our novel ideas that allow the adversarial mechanism to effectively
leverage the properties of signed networks: (1) extension of graph
softmax; (2) fake edge generation; (3) embedding space sharing.
In this paper, we carefully incorporated them to ASiNE, thereby
providing more-accurate embeddings that preserve the structural
characteristics of signed networks.

More specifically, the extension of graph softmax assigns a pos-
itive/negative connectivity probability for a pair of nodes in G−

if there are an even/odd number of edges between them, making
the balance theory satisfied. Also, the probability decreases with
the increase of the distance between the two nodes, which helps to
preserve the proximity in G−. Thanks to the idea of the extension
of graph softmax, our fake edge generation idea generates both
fake positive and negative edges in G− satisfying two conditions: (a)
their edge sign is determined by the balance theory; (b) they have

Table 2: Summary of the datasets used in the experiments

Datasets Nodes Edges Positive Edges Negative Edges

Bitcoin-Alpha 3,784 14,145 12,729 (89.9%) 1,416 (10.1%)
Bitcoin-OTC 5,901 21,522 18,390 (85.4%) 3,132 (14.6%)
Slashdot 13,182 36,338 30,914 (85.1%) 5,424 (14.9%)
WikiRfA 11,258 185,629 144,451 (77.8%) 41,178 (22.2%)
Epinions 25,148 105,061 74,060 (70.5%) 31,001 (29.5%)

a high absolute value of positive/negative connectivity probability.
As a result, we can generate both fake negative and positive edges
in a single random-walk-path with G− alone (i.e., not requiring
two separate generators). Lastly, the embedding space sharing idea
considers effectively various combinations of positive and nega-
tive signs on the path between nodes. This idea is more effective
than the ideas of aggregating (separate) positive and negative em-
beddings, widely used in existing NE methods. In Section 4, we
demonstrate that each of our ideas is fairly effective and our final
ASiNE integrating all ideas is the most effective.

4 EVALUATION
In this section, we validate the effectiveness of our approach via
extensive experiments. We designed our experiments, aiming at
answering the following key questions:
• RQ1: Does sharing a single embedding space by generators (G+,
G−) and discriminators (D+, D−) help to signed NE?
• RQ2: Does our adversarial learning with edge signs help to signed
NE?
• RQ3: Do fake positive edges generated from G− help to signed NE?
• RQ4: Does our ASiNE framework provide more-effective repre-
sentation vectors than state-of-the-art signed NE methods?
• RQ5: How do different values of parameters influence the accuracy
of ASiNE?
• RQ6: Is the training of ASiNE scalable?

4.1 Experimental Settings
Datasets. In this paper, we used five real-life signed network datasets
without any preprocessing: (1) Bitcoin-Alpha, Bitcoin-OTC, and
WikiRfA in SNAP (https://snap.stanford.edu/data); (2) Slashdot and
Epinions in AMiner (https://www.aminer.cn/data-sna). We regard
all the networks as undirected networks. Table 2 shows the detailed
statistics of the five datasets.
• Bitcoin-Alpha and Bitcoin-OTC are trust networks between
bitcoin users designed to prevent transactions with fraudulent
and risky users. These networks include trust (i.e., positive) and
distrust (i.e., negative) edges between users.
• Slashdot is a friend network between users on a technology
news site. This network contains friend (i.e., positive) and enemy
(i.e., negative) edges between users.
• WikiRfA is a voting network for electing managers in Wiki-
pedia. This network contains users’ supporting vote (i.e., positive)
and opposing vote (i.e., negative) edges.
• Epinions is a trust network between users on a product review
site. This network includes trust (i.e., positive) and distrust (i.e.,
negative) edges between users based on their reviews.

Competing methods. We compare ASiNE with four state-of-the-
art signed NE methods:
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• SNE [40]: This method utilizes a log-bilinear model [29] with
randomwalk sampling. However, it does not consider the balance
theory for signed networks.
• SIDE [18]: This method utilizes a skip-gram model [27] with
random walk sampling. It aggregates signs and directions along
the path according to the balance theory. In addition, we employ
a variant of SIDE, denoted as SIDEopt , using the optimization
techniques proposed in [18]. It subsamples high-degree nodes
and deletes one-degree nodes.
• SGCN [9]: This method utilizes a GCN model [12]. It aggregates
and propagates the information across the layers of the signed
GCN model.
• SLF [39]: This method utilizes a latent-factor model [19]. It ex-
ploits two types (i.e., positive and negative) of latent factors for
each node and combines the two factors to represent the node.

For evaluation, we used the source codes provided by the au-
thors [9, 18, 39, 40]. For a fair comparison, we set node embeddings
for all methods to the same dimensionality, 128, following [18].
For other parameters for each method, we used the best settings
found via extensive grid search in the following ranges suggested
in their respective papers: learning rate ∈ {0.01, 0.025, 0.001, 0.0025};
window size ∈ {1, 2, 3, 4, 5} (for SNE, SIDE); maximum length of
random walk path ∈ {10, 20, 30, 40, 50} (for SNE, SIDE); number of
layers ∈ {1, 2} (for SGCN); sample size of the null relationships ∈
{10, 20, 50, 100} (for SLF); p0 ∈ {0.001, 0.01, 0.1} (for SLF). The best
setting found in ASiNE is as follows: learning rate = 0.01, e = 20,
д = 20, d = 20, i = 10,w = 2.
Evaluation metrics. Following [9, 18, 39, 40], we employ an edge
sign prediction task to evaluate the accuracy of ASiNE and the
competing methods: we first output the embedding vectors of all
nodes in the training set by using each method; then, we train a
logistic regression classifier with the embedding vectors of each
method as features; finally, we predict the edge signs in the test set
based on the learned classifier for each method. We note that the
proportion of positive and negative edges is unbalanced in most
signed networks. To address the class imbalance problem, we use
the following two metrics popularly employed in other signed NE
research [9, 18, 39, 40]: area under curve (AUC) and F1-micro. The
final accuracy of each metric was determined by averaging the five
accuracies obtained from five-fold cross-validation. Due to space
limitations, we omit some experimental results in this paper. The
details for all experiments are available at https://bit.ly/2YYxIMP.

4.2 Results
RQ1: Effectiveness of shared embedding spaces. Note that, to
learn both positive and negative edges, we let G+ and G− share
one embedding space and D+ and D− share another embedding
space. In order to verify the effectiveness of this sharing strategy,
we made variants of ASiNE that do not employ the sharing strategy:
they update the parameters in each of four independent embedding
spaces byG+,G−,D+, andD− and get the final embedding space by
combining two embeddings learned by G+ and G−. For combining
the two embeddings, we employed the following four widely used
operators [39, 40]: L1_weight (L1): дv = |д+v − д−v |, L2_weight (L2):
дv = |д+v −д−v |2, Average (Avg):дv = 1

2 (д+v +д−v ), and Concatenation

ASiNEG(L1) ASiNEG(L2) ASiNEG(Avд)
ASiNEG(Con) ASiNEG(Share) ASiNEG+

Bitcoin-Alpha Bitcoin-OTC Slashdot WikiRfA Epinions
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Figure 4: Comparison between the ASiNE methods
with/without the embedding space sharing strategy.

(Con): дv = д+v ⊕ д−v . We denote the four variants of ASiNE accord-
ing to the operators as ASiNEG(L1), ASiNEG(L2), ASiNEG(Avд),
and ASiNEG(Con). For comparison, we denote a variant using our
sharing strategy as ASiNEG(Share).

Figure 4 shows the accuracy of the variants of ASiNE in terms of
the AUC. The x-axis represents each method in each dataset, and
they-axis does the AUC. First, among four variants that do not share
the embedding spaces, we found that ASiNEG(L1) and ASiNEG(L2)
showed the best accuracy in the small datasets (i.e., Bitcoin-Alpha,
Bitcoin-OTC), whereas ASiNEG(Con) showed the best accuracy in
the large datasets (i.e., Slashdot, WikiRfA, Epinions). However, we
observed that ASiNEG(Share) consistently outperforms all other
variants in all datasets. Specifically, ASiNEG(Share) improves the
AUC of ASiNEG(Con) by 4.09%, 6.78%, 4.21%, 8.69%, and 9.64% for
Bitcoin-Alpha, Bitcoin-OTC, Slashdot, WikiRfA, and Epinions, re-
spectively. This result indicates that learning the proximity of both
positive and negative edges in a shared embedding space helps
to consider complex relations of both positive and negative signs
between nodes.
RQ2: Effectiveness of adversarial learning with edge signs.
Next, we verify whether our adversarial learning with edge signs
helps in signed NE. To do this, we compare ASiNEG(Share) and a
variant, denoted as ASiNEG+ , of ASiNE that uses only the positive
subgraph G+. Note that ASiNEG+ is equivalent to GraphGAN [36].

Figure 4 shows the accuracy of ASiNEG(Share) and ASiNEG+ .
We found that ASiNEG(Share) significantly outperforms ASiNEG+
in all datasets. Specifically, ASiNEG(Share) improves the AUC of
ASiNEG+ by 11.05%, 7.69%, 6.88%, 13.83%, and 4.86% for Bitcoin-
Alpha, Bitcoin-OTC, Slashdot, WikiRfA, and Epinions, respectively.
This result shows that our adversarial learning with edge signs is
more effective in representing the signed network compared to the
one without them. In addition, the result validates our objective
functions designed to consider edge signs.
RQ3: Effectiveness of fake positive edges from G−. As men-
tioned in Section 3.3, we generate fake positive and negative edges
from G+ and G−, respectively. Furthermore, we additionally gen-
erate fake positive edges from G− by exploiting “an enemy of my
enemy is my friend” of the balance theory. To verify the effective-
ness of this strategy of fake positive edge generation, we compare
ASiNEG(Share) and a variant, denoted as ASiNEG(Share + FPG− ),
of ASiNE that performs the additional learning of the fake positive
edges generated from G−.

Table 3 shows the accuracies of ASiNEG(Share) andASiNEG(Sha
re + FPG− ) in terms of the AUC and F1-micro. We found that
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Table 3: Comparison between the ASiNE methods
with/without fake positive edges generated from G−

Methods ASiNEG(Share) ASiNEG(Share + FPG−)
Metrics AUC F1-micro AUC F1-micro

Bitcoin-Alpha 0.860 0.931 0.866 0.935
Bitcoin-OTC 0.853 0.908 0.869 0.908
Slashdot 0.890 0.885 0.893 0.883
WikiRfA 0.788 0.792 0.806 0.800
Epinions 0.915 0.869 0.918 0.876

Table 4: Comparison of five competing methods and ASiNE
SNE SIDE SIDEopt SGCN SLF ASiNE

Bitcoin
-Alpha

AUC 0.822 0.744 0.747 0.783 0.844 0.866
F1-micro 0.918 0.919 0.917 0.851 0.915 0.935

Bitcoin
-OTC

AUC 0.816 0.835 0.841 0.798 0.860 0.869
F1-micro 0.878 0.896 0.894 0.839 0.895 0.908

Slashdot AUC 0.853 0.842 0.671 0.767 0.866 0.893
F1-micro 0.868 0.841 0.861 0.851 0.879 0.883

WikiRfA AUC 0.611 0.740 0.737 0.620 0.790 0.806
F1-micro 0.772 0.778 0.790 0.543 0.797 0.800

Epinions AUC 0.758 0.867 0.765 - 0.896 0.918
F1-micro 0.771 0.818 0.797 - 0.852 0.876

-: out-of-time

ASiNEG(Share + FPG− ) universally outperforms ASiNEG(Share) in
all datasets and with all metrics. This result shows that additional
learning of fake positive edges generated from G− is helpful for
accurate signed NE. Thus, we will use ASiNEG(Share + FPG− ) as
our final approach in the following experiments, simply denoting
ASiNEG(Share + FPG− ) as ASiNE.
RQ4: Comparison with state-of-the-art signed NE methods.
We conducted comparative experiments to show greater accuracy of
ASiNE than that of the following five competing methods: SNE [40],
SIDE [18], SIDEopt [18], SGCN [9], and SLF [39]. Table 4 illustrates
the result.8 The value in boldface indicates the best accuracy in each
row, and the value in italic does the accuracy obtained from the best
performer among “all competing methods”.

We summarize the results shown in Table 4 as follows. First,
the best performer among the competing methods depends on the
datasets and the metrics: SLF (AUC) and SIDE (F1-micro) for Bitcoin-
Alpha and Bitcoin-OTC; SLF for Slashdot, WikiRfA, and Epinions.
Second, our ASiNE consistently and significantly outperforms all
competing methods in all datasets and with all metrics. More specif-
ically, our ASiNE improves the accuracies of SIDE/SLF, the best
performers among the competing methods, up to 16.37%/3.18% in
terms of AUC, respectively.

The experimental results can be summarized as follows: (1) our
embedding space sharing strategy enables to represent nodes in
the embedding space accurately, in such a way to preserve the
proximity by both positive and negative edges; (2) our fake edge
generation strategy based on the balance theory helps to provide
more-sophisticated node embeddings by learning rich relationships
between nodes; (3) our adversarial learning with edge signs enables
to learn accurately the underlying positive/negative connectivity

8Note that, in Epinions, the accuracies of SGCN could not be obtained; SGCN has
not finished its training in a week.
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Figure 5: Accuracy changes according to the number of
epochs.

distribution of a signed network under the guidance provided by
the discriminators.
RQ5: Parameter analysis for ASiNE.9 To understand the learn-
ing stability of ASiNE, we analyze carefully the changes of accuracy
according to different epochs. Figure 5 shows the changes of the
accuracy by the generator and the discriminator of ASiNE over the
increasing number of epochs. Note that two generators share one
embedding space, and two discriminators share another embedding
space; thus, two generators (resp. two discriminators) have only
one accuracy. The x-axis represents the number of epochs, and the
y-axis does the AUC of our generator and discriminator in each
epoch in Bitcoin-Alpha.

In Figure 5, the minimax game in our ASiNE shows two trends:
(1) the accuracy of the generator steadily increases up to a certain
epoch (=20 for Bitcoin-Alpha) and then reaches equilibrium; (2)
the accuracy of the discriminator increases only up to a certain
epoch (=5 for Bitcoin-Alpha) and then gradually decreases. This
result indicates that, after a certain epoch, our generator produces
realistic fake edges that can deceive discriminator, thereby degrading
the accuracy of the discriminator. We note that this trend coincides
with those reported in [36].
RQ6: Scalability analysis for ASiNE. To test the scalablity of
ASiNE, we examine the changes of its execution time as the num-
ber of edges increases. Towards this end, wemeasured the execution
time of ASiNE by adding duplicate edges to WikiRfA.10 The ex-
periments were conducted in Windows 10 running on Intel Core
i9 processor (3.60 GHZ) with 64GB RAM. The result shows that
the execution time was around 60, 135, 210, 285, 360 minutes when
we have about 0.2M (185,629), 0.4M (371,258), 0.6M (556,887), 0.8M
(742,516), 1M (928,145) edges. This result indicates that ASiNE has
a linear scalability with the increasing number of edges.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we designed a novel signed NE framework, ASiNE,
based on the adversarial learning. Under our ASiNE framework,
we proposed three ideas for effective signed NE: (1) (G+, D+) and
(G−, D−) play two pairs of minimax games that consider edge signs;
(2) (G+, G−) shares one embedding space for generation, and (D+,
D−) shares another embedding space for discrimination to learn
positive and negative edges together; (3)G− generates not only fake
negative edges but also fake positive edges based on the balance

9Due to space limitations, we omit the results in other parameters (i.e., dimen-
sionality of embedding, size of generating and discriminating edges, window size);
please, refer to https://bit.ly/2YYxIMP.

10WikiRfA has the largest one among the five datasets used in this paper.
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theory. Through comprehensive experiments using five real-life
signed networks, we demonstrated that each of our ideas for signed
NE is effective and our final ASiNE framework integrating all ideas
is the most effective in achieving the high accuracy of edge sign
prediction tasks. In addition, our experimental results showed that
ASiNE consistently and significantly outperforms all the state-of-
the-art signed NE methods in all datasets and with all metrics.

Our ASiNE framework is the first attempt that employs adver-
sarial learning for signed NE, suggesting a promising direction for
signed NE. As future work, we plan to extend our ASiNE framework
by integrating the recent state-of-the-art GANs (e.g., Wasserstein
GAN [1], BEGAN [2]). In addition, we note that the directions and
weights of edges provide additional information, useful in under-
standing real-life networks [11, 18, 34]. Thus, we plan to design
a new strategy to consider them together on top of our ASiNE
framework.
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